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Abstract - Ensuring sustainability in electric power grid 
requires a high-efficiency energy management system with 
lessened energy depletion. Hence, a smart power grid with an 
utmost flexible management system alongside an intelligent 
officiating capability has no alternatives. Predicting the future 
energy requirement is considered as one of the key features of 
smart grid. Therefore, the studies of the energy forecasting 
have started to contribute to the path of efficient energy 
management for the grid. This paper presents a comparative 
analysis of forecasting energy demand between a Time series 
analysis technique (ARIMA model) and a Machine learning 
technique (Random Forest). A benchmark data set of the 
small-scale industrial load is taken as consideration for “train 
and test” both methods. Both techniques are trained and 
tested on monthly (Short Term Load Forecasting) and yearly 
(Long-term load forecasting) timespan data. A comparative 
study depending on the accuracy rate between these two 
algorithms are is presented for forecasting energy demand.  
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1. INTRODUCTION 
 
With the growing energy demand, expected to be increased 
by 40% by 2040, the consumption of fossil fuels has already 
started to reach its peak [1]. The shortage of fossil fuels like 
coal, oil, natural gas, and other resources is inevitable in the 
near future. Correspondingly, the increasing rate of carbon 
emission due to fossil fuel consumption in power generation, 
estimated to be roughly 25%, is also a major concerning 
issue for global warming [2]. So, more and more renewable 
energy resources are getting into the picture of the power 
generation field. However, renewable energy brings with it 
an additional challenge of inherent stochasticity. Therefore, 
an accurate energy forecast can ease the road of application 
of renewable into grid [3]. Moreover, its significance is only 
going to increase because of increased penetration of 
inherently volatile distributed renewable energy resources 
in the power grid [4]. 

Additionally, Short-Term Load Forecasting (STLF) and Long-
Term Load Forecasting (LTLF) are vital for today's 
deregulated market as an efficient way of planning, load 
switching, and energy buying strategy [3]. Any good STLF 
and LTLF methods should satisfy the following two criteria: 

1) accuracy and 2) speed. The significant variables affecting 
energy demand should also be considered for forecasting [3]. 
Therefore, in the power grid, variables like weather, time of 
the day, season, and the base demands are the crucial factors 
to consider [5]. 

Energy load forecasting methodologies can be categorized 
into three major groups: 1) statistical techniques, 2) artificial 
intelligence techniques, and 3) a hybrid of the first two 
methods [6-10]. Here, the classical statistical models are 
referred to as the white-box models. The relationship 
between outputs and inputs is expressed with mathematical 
equations. These methods are simpler in their 
implementation. However, they lag the AI-based methods in 
terms of accuracy. The AI-based models are generally 
termed black box models and based on machine learning 
algorithms. These models are somewhat complex but can be 
applied to a wider range of scenarios. Hybrid methods 
couple artificial intelligence and optimization algorithm 
together, which results in higher accuracy, computational 
period, and complexity. 

Despite usage complexity, Time series methods have gained 
popularity for both STLF and LTLF recently. Modern data-
driven systems can analyze and predict result even from a 
big data system [11]. ARIMA model is designed only to 
reflect the behavior of observed data over time. Other 
explanatory variables for forecasting are not considered in 
the case [12]. ARIMA is generally used in stationary 
processes; however, ARIMA can also be used in non-
stationary processes although, a differencing operation or 
other necessary transformations need to be carried out to 
alter the non-stationarity of the process. ARIMA model is 
characterized by three parameters: p, d, and q, where they 
represent the order of the autoregressive terms (p), 
differencing terms (d), and moving average terms (q), 
respectively. 

Machine learning algorithms have already proven their 
efficacy in capturing complex load characteristics. The two 
most widely studied machine learning techniques in the 
arena of load forecasting are support vector machine (SVM) 
and artificial neural network (ANN) [13][14]. Despite the 
ability of computation and incorporating non-linearity, these 
methods carry major drawbacks: tuning of parameters in 
SVM and being trapped in local optimization for ANN 
[15][16]. Moreover, another major issue with forecasting 
problems in the selection of an optimal number of features; 
both SVM and ANN must deal with this issue. However, 
random forest (RF), which is a kind of ensemble method, 
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aims to tackle this issue [17]. RF is a fast forecasting method, 
where accuracy is as good as ANN and SVM. Moreover, 
parameter tuning is not essential in RF as even bad selection 
of parameters does not worsen the prediction accuracy 
drastically [15]. Finally, RF results in a globally optimal 
solution through formulating a convex optimization problem 
[14]. 

 

2. SYSTEM MODEL 
 
2.1 ARIMA Model 
 
For forecasting a stationary time series, the most widely used 
methodology is ARIMA models. The ARIMA model acts as a 
regression-type linear equation for stationary time series, 
where the predicted value (dependent variable) consists of 
lag terms of the projected value and lag terms of the 
residuals. So, the general format of the ARIMA forecasting 
equation is as follows [18]: the forecasted value of Y = a 
weighted sum of one or more autoregressive terms of Y 
and/or a weighted sum of forecast errors (along with 
associated lag terms) and/or a constant. The ARIMA model is 
purely autoregressive if it contains only the lagged terms of Y. 
Autoregression is a specific variation of regression and can be 
fitted with any standard software of regression. A first-order 
autoregressive model (AR(1))'s independent variable is Y(t-1), 
which is one time period lagged version of Y. 

When the model includes the lagged terms of the errors, it 
deviates away from being a linear regression model. Although 
the predictions are still linear functions of past values, the 
prediction does not have a linear relationship with the 
coefficients. That is why the coefficients of an ARIMA model 
that contains lagged errors need to be optimized by non-
linear techniques like hill-climbing. 

2.2 Non-Seasonal ARIMA 

An ARIMA (p, d, q) model is the non-seasonal variation, 
where p, q, and d represent the number of total 
autoregressive terms, lagged forecast error terms and 
differencing needed to ensure stationarity, respectively. If the 
dth (d = 0, 1, 2) difference of Y is denoted as y, then the 
autoregressive terms are constructed respectively as follows 
[19]: 

 

 

 

    A very interesting point to be noted here is that the 
second difference, Equation 2, is not actually the difference 
between two time periods, rather, it is analogous to the 
second derivative. Finally, the forecasting equation can be 
presented in the following way: 

 

The parameters of autorepression and moving average 
operations are represented by φ and θ, respectively. In order 
to determine the relevant ARIMA model for a forecasting 
purpose, first the order of differencing (d) needed for series 
stabilization is determined. Then the gross seasonality 
features are reduced and variance-stabilizing 
transformations like deflating or logging have been 
performed. Without the deflating process of the data set, this 
model will just be considered as the random trend or random 
walk model. However, the stationary series would still need 
MA terms (q ≥ 1) and AR terms (p ≥ 1) to represent the 
autocorrelated errors. 

2.2.1 Model Formulation 

The framework to fit non-seasonal time series data into an 
ARIMA model is described in the following steps and in 
Figure 1 below: 

 Data plotting and identifying unusual patterns 

 Data transformation for variance stabilization, if 
necessary 

 Conversion of the time series into a stationary one 

 Plotting and analyzing the correlation functions – 
Auto Correlation Function (ACF) and Partial Auto 
Correlation Function (PACF) 

 Model selection and optimizing it using Akaike 
Information Criteria (AIC) 

 Residual checking of the chosen model by 
conducting a Portmanteau test and plotting the 
residual ACF; the model needs to be modified if the 
residuals do not indicate the presence of white noise 
only 

 Forecast calculation, when the residuals represent 
white noise only 
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Figure 1: Forecasting Framework for ARIMA Model 

 

2.3 Seasonal ARIMA 

Seasonality is the presence of a regular pattern in the data set 
where the pattern is periodic. The seasonality in a time series 
is represented by parameter S, the span of the seasonality. 
For example, if yearly sales data of some equipment tend to 
have high and low values during winter and summer 
respectively, then S = 12. Just like the non-seasonal time 
series, seasonal data can also be modeled and forecasted as 
an ARIMA process. 

A seasonal ARIMA is a multiplicative model that incorporates 
both the variations, seasonal and non-seasonal. The 
generalized seasonal ARIMA model is expressed in the 
following way [21]: 

 

where, p = order of AR terms (non-seasonal), P = order of AR 
terms (seasonal), q = order of MA terms (non-seasonal), Q =  

 

order of MA terms (seasonal), d = order of differencing (non-
seasonal), D = order of differencing (seasonal), and S = span 
of pattern in seasonality 

A seasonal ARIMA model is expressed in a more 
mathematically detailed way by Equation 6: 

 

 

 

where B represents the backshift operator which is defined 
by the following operation: 
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2.3.1 Model Formulation 

The seasonal ARIMA model can be formulated using the 
following steps: 

 Data plotting and identifying patterns of seasonality 
and trend. 

 Performing differencing operation if either 
seasonality or trend is present. For only seasonality, 
differencing of lag S needs to be done. When the only 
trend is present, a first-order differencing needs to 
be performed. Finally, when both seasonality and 
trend are present, a first-order differencing should 
be done after seasonal differencing if the presence of 
trend is still there. 

 Analysis of the differenced time series data using 
ACF and PACF. ACF and PACF give us the order of 
MA terms and AR terms respectively for both 
seasonal and non-seasonal data. 

 Estimation of the seasonal model. 

 Analysis of residual to check whether the model is a 
good fit. 

2.4 Random Forest 

Random forest, a supervised learning algorithm, was 
developed by Hyndman and Athanasopoulos [21] in 2001. It 
is based on bagging and Classification and Regression Trees 
(CART) techniques. CART is the basic building block of RF. 
CART is a classification algorithm with a tree-like structure. 
CART maps observation about a sample into a decision about 
the sample's class. A simplified CART algorithm is illustrated 
in Figure 2. 

 

Figure 2: CART Algorithm 

Every node is a decision point in CART and the decision 
process propagates until a leaf node is reached. Based on the 
GINI index [22], every node is split into two sub-nodes. CART 
has a good fitting ability; however, the generalization error is 
relatively high in CART. Bagging method is another basic 
building block of RF, which solves the overfitting problem 
[13]. When used alongside CART, it significantly increases the 
latter method's generalization ability. Bootstrap sampling is 
the basis of the bagging method. 

The training data are used for the performance analysis of 
this generalization ability and it is possible because of the 
existence of out-of-bag (OOB) samples. RF, which contains a 
lot of CARTs, decides on the final prediction by averaging the 
outputs from all the CARTs. Moreover, RF further increases 

its variance by utilizing random node optimization. The 
bagging method, along with other modifications, enhances 
the performance of CART and makes RF more robust. 

It is highly probable that the trees in RF are correlated as they 
use the bagging principle and use the same data. To tackle 
this issue and make the trees uncorrelated, Breiman [21] 
proposed to grow each split of the tree randomly, both in 
terms of features and number of samples. This decorrelation 
increases the accuracy of RF prediction [23]. A complete 
specification of RF needs a setting of three parameters:  B, m 
and nmin. They represent forest size or several trees, the 
number of randomly chosen predictors for each split, and 
minimum leaf size or number of nodes, respectively. 

The RF algorithm is built using the following three steps: 

 Extract B sample datasets, which can be overlapped 
and replaced, from the training data. 

 For each of the B datasets, grow a tree Tb by 
following the steps in each node, until nmin is 
reached: 

 Select m randomly from the total number of 
variables, p 

 Select the best predictor out of the m 
predictors 

 Split the node into two sub-nodes according 
to an established criterion 

 Summarize the outputs from all the trees by finding 

the ensemble, . 

Finally, at any given point x, the prediction is given by 
Equation 8 [24]: 

 

The general framework of RF is illustrated in Figure 3 
[24]. 
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Figure 3: Generalized RF Framework 

3. ANALYSIS 

The ACF and PACF plots of a time series can demonstrate the 
stationarity of a time series. If the ACF of a time series 
decreases quickly or the PACF of a time series has a sharp 
cutoff after the first lag [23], then the time series is deemed to 
be stationarity. Otherwise, the time series is non-stationary 
and differencing operation needs to be performed to ensure 
stationarity. After the necessary ACF and PACF plotting, 
Augmented Dickey-Fuller (ADF) test is performed for 
hypothesis testing to confirm stationarity. 

ADF [24] is a widely used method for checking the 
stationarity of a time series [26-28]. ADF is also called the 
unit root test. Presence and absence of a unit root in the 
characteristic equation indicate non-stationarity and 
stationarity, respectively. The model for the ADF test is as 
follows: 

 

Here, µ, ρ and β represent a constant value, autoregressive 
order and trend, respectively. Moreover, et represents a 
sequence of zero mean and unit variance independent normal 
random variables. So, the hypotheses for ADF are presented 
in the following way [23]: 

 

 

The p-value that we obtain after running the ADF test decides 
whether to reject or accept the null hypothesis. For a 95% 
confidence level, if p≥0.05, null hypothesis is true. For p<0.05, 
the value is significant enough to reject the null hypothesis 
and the time series is stationary. 

 

3.1 Short Term Load Forecasting 

The load profile used for short-term load forecasting is 
plotted in Figure 4. This is the industrial load profile for the 
month of January 2017. The total daily load of this timeline, 
along with the rolling mean and standard deviation is 
displayed in Figure 5. Finally, this short-term daily load is 
decomposed into the trend, seasonal and residual 
components, as demonstrated in Figure 6. 

 

Figure 4: Short-Term Load Profile 

 

Figure 5: Short-Term Load Profile with Rolling Mean 
and Standard Deviation 

 

Figure 6: Decomposition of Short-Term Load Profile 

As evident from Figure 6, the short-term load profile contains 
an increasing trend on average, as well as seasonality. So, the 
time series data of short-term load is not stationary and 
would need to be modeled using seasonal ARIMA. A first-
order differencing operation is performed on the time series 
data. The ADF test is conducted on the differenced time series 
data and the obtained p-value is 1.98*10-14. As the p-value is 
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well below 0.05, it can be concluded that the differenced time 
series is stationary and can be modeled using ARIMA. The 
ACF and PACF plots of the stationary time series are 
demonstrated in Figures 7 and 8, respectively. The ACF and 
PACF confirm the stationarity of the differenced time series. 
Moreover, the significant terms of the ACF and PACF plots 
would represent the order of MA and AR terms, respectively. 

 

Figure 7: ACF of Short-Term Load 

 

Figure 8: PACF of Short-Term Load 

ARIMA (0,1,0) (1,1,1)7 model has been used to forecast the 
short-term loads. So, the system model equation becomes: 

 

The residual, along with their histogram, q-q plot and 
correlogram have been plotted in Figure 9. The residual 
mostly follows a normal distribution, which proves the 
validity of our SARIMA model.  

 

Figure 9: Residual analysis of SARIMA modeling of short-
term load 

Finding the variables with the most predictive power is one 
of the major topographies in the prediction process using RF 
methodology. Variables with high importance are the main 
drivers of the prediction result. Additionally, low important 
variables can be removed from the process which makes it 
simple and fast for fitting and predicting the outcome. Figure 
10 shows the importance of the given variable when 
predicting the outcome. It shows that the hours of the day 
alongside the weather feature like temperature have a high 
importance rate in the prediction process. 

 

Figure 10: RF variables of short-term load 

3.2 Long Term Load Forecasting 

The load profile used for long term load forecasting is plotted 
in Figure 11. This is the industrial load profile for the entire 
calendar year of 2017. The total daily load of this timeline, 
along with the rolling mean and standard deviation, has been 
displayed in Figure 12. Finally, this long-term daily load is 
decomposed into the trend, seasonal and residual 
components, as demonstrated in Figure 13. 
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Figure 11: Long-term load profile 

 

Figure 12: Long-term load profile with rolling mean and 
standard deviation 

 

Figure 13: Decomposition of long-term load profile 

As evident in Figure 13, the long-term load profile contains an 
initial increasing trend and a decreasing trend later, as well 
as seasonality. So, the time series data of long-term load is not 
stationary and would need to be modeled using seasonal 
ARIMA. A first-order differencing operation is performed on 
the time series data. The ADF test is conducted on the 
differenced time series data and the obtained p-value is 
0.005. So, one can reject the null hypothesis and consider the 
differenced time series as stationary. The ACF and PACF plots 
of the stationary time series are demonstrated in Figures 14 
and 15, respectively. The ACF and PACF confirm the 

stationarity of the differenced time series. Moreover, the 
significant terms of the ACF and PACF plots would represent 
the order of MA and AR terms, respectively. 

 

Figure 14: ACF of long-term load 

 

Figure 15: PACF of long-term load 

 

Figure 16: Residual analysis for SARIMA modeling of 
long-term load 

ARIMA (0,1,0) (1,1,1)12 model has been used to forecast the 
long term loads. So, the system model equation becomes: 

 

The residual, along with its histogram, q-q plot and 
correlogram have been plotted in Figure 17. The residual 
mostly follows a normal distribution, which proves the 
validity of our SARIMA model. 
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Figure 17 also shows the importance of variables for 
predicting the outcome. The feature importance figure shows 
that the hours of the day together with the weather feature 
like temperature have a high importance ratio. 

 

Figure 17: RF variables for long-term load profile 

4. RESULTS 

4.1 Short Term Forecasting 

For the short-term load profile, SARIMA has been used to 
forecast the total daily load for the second half of January and 
the predicted values are plotted together with the actual load 
values in Figure 18. 

 

Figure 18: Actual versus forecasted short-term load using 
SARIMA 

RF is used to predict the total load from January 22 to January 
31, and the predicted values are demonstrated along with the 
actual load values in Figure 19. 

 

Figure 19: Actual versus forecasted short-term load using 
RF 

Finally, the comparison of the forecasting accuracy between 
SARIMA and RF is illustrated in Figure 6.20. The accuracy of 
forecasting using SARIMA and RF is 85.74% and 97.02%, 
respectively. So, it can be noted that RF based forecasting is a 
significant improvement over SARIMA based forecasting for 
short-term loads. 

 

Figure 20: Accuracy comparison for short-term load 
forecasting 

4.2 Long Term Forecasting 

For the long-term load profile, SARIMA has been used to 
forecast the total daily load for the last two months of the 
year and the predicted values are plotted together with the 
actual load values in Figure 21. 

 

Figure 21: Actual versus forecasted long-term load using 
SARIMA 

RF is used to predict the total load for the last three months of 
the year and the predicted values are demonstrated along 
with the actual load values in Figure 22. 
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Figure 22: Actual versus forecasted long-term load using 
RF 

Finally, the comparison of the forecasting accuracy 
between SARIMA and RF for long-term loads is illustrated in 
Figure 23. The accuracy of forecasting using SARIMA and RF 
is 83.65% and 97.25%, respectively, which is a clear indicator 
of the superiority of RF over SARIMA for long-term load 
forecasting. 

 

Figure 23: Accuracy comparison for long-term load 
forecasting 

5. CONCLUSION 

In this work, a comparative performance analysis has been 
conducted between the widely used classical time series 
modeling tool ARIMA and recently introduced but highly 
effective machine learning algorithm RF. These two methods 
have been applied for forecasting of short-term and long-
term industrial loads. As the loads have seasonality in their 
profile, the seasonal variation of ARIMA (SARIMA) has been 
used for forecasting purpose. Both the ARIMA and RF have 
been introduced and their modeling techniques are discussed 
briefly in this work. Classical statistical analysis tools like 
ACF, PACF, and ADF test are used to aid in the SARIMA 
modeling process. For both the short-term and long-term 
load profiles, RF demonstrates superior performance over 
SARIMA in terms of accuracy. However, the tradeoff among 
accuracy, complexity, and speed of execution is an issue that 
should be further studied. Forecasting using machine 
learning methods is a promising arena of research and more 
ML algorithms need to be tested for forecasting performance. 
Moreover, deep learning would be explored in future 
research to check their feasibility to enhance forecasting 
accuracy. 
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