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Abstract — Flow induced vibration with internal fluid flow for long slender cylindrical pipe conveying fluid is studied in this 
thesis. The fourth order partial differential equation of motion for lateral vibration is employed to develop the stiffness and 
inertia matrix corresponding to two of the terms of the equations of motion. The Equation of motion further includes a mixed-
derivative term that was treated as a source for a dissipative function. Four type of boundary condition namely pinned-pinned, 
clamped-pinned, clamped-clamped and clamped-free were considered for the pipe. Analytical approach is used which are 
based on Galkerin’s method to finding the natural frequency at different boundary conditions and velocities. Further, ANSYS 
15.0 is used as a tool for computational analysis for different boundary conditions and velocities. A comparison are made 
between these two methods and evaluate the percentage error to check the accuracy of the solutions. Pipe buckling or 
divergence is observed by increasing the flow velocity of fluid for different boundary conditions. The velocity at which the 
buckling starts is called critical velocity and natural frequency is diminishes at the onset of divergence for pinned-pinned, 
clamped-pinned, clamped-clamped boundary conditions. But very little effect was observed for the velocity ranges used. The 
instability of pipe in pinned-pinned, clamped-pinned, clamped-clamped boundary conditions are due to centrifugal forces in 
the pipe is observed. But, for clamped-free pipe the Coriolis component of force causes instability in pipe. 

Keywords- cascade induced vibration; Mechanics of fluid; Momentum transfer; Slender cylindrical pipe; clamped free pipe. 

I. INTRODUCTION 

1.1 Overview of Internal Flow Induced Vibrations in Pipes The vibrationabrought on by a liquid flowing in or around a 
body is known as Flow Induced Vibration (FIV). FIV best portray the cooperation that happens between the liquid's 
dynamic strengths and a structure's inertial, damping and flexible forces. The flow of a liquid through a pipe can force 
pressure on the walls of the pipe making it deflect under certain conditions. This deflection of the pipe may cause 
structural instability of the pipe. The fundamental natural frequency of a pipe for the most part reduces with increasing 
speed of liquid flow. There are sure situations where reduction in the natural frequency can be critical, for example, those 
utilized as a part of sustain lines to rocket engines and water turbines. The pipe ends up noticeably to resonance or fatigue 
failure if its natural frequency decreases up to certain limits. With expansive liquid speeds the pipe may become unstable. 
The most common type of this instability is the whipping of an unlimited garden hose. The investigation of dynamic 
reaction of a liquid passing on pipe in conjunction with the transient vibration of cracked pipes uncovers that if a pipe 
breaks through its cross area, then an adaptable length of unsupported pipe is left spewing out fluid and is allowed to whip 
about and affect different structures. In power plant plumbing pipe whip is one of probable condition for a failure of pipe. 
An investigation of the impact of the subsequent high speed liquid on the static and dynamic qualities of the pipe is 
accordingly vital. 

1.2 Classification Of Flow Induced Vibration The classification of flow induced vibration is shown in the figure 1.The 
classification is categorize according to the type of flow:  

 1. Steady  

 2. Unsteady 

In steady flow the vibration in pipes is due to two phenomenon. The first is instability and other is vortex induced. The 
instability in pipes occurs due to flutter, galloping and fluid elastic instability. Flutter basically occurs in pinned-pinned 
and pinned-clamped pipes. When fluid velocity reaches a critical velocity the buckling (divergence) phenomenon occurs 
due to centrifugal forces and pipe will become unstable. This phenomenon is called flutter. The fundamental frequency is 
zero due to flutter and instability in pipes occurs. 

1.3 Slender structures in axial flow practically, the dynamics of the problems are often too difficult to fully describe 
starting purely from the fundamentals of Mechanics such as Newton’s Laws or Hamilton’s principle. Rather, a multi-
faceted investigation involving empiricism, experience, numerical simulation, experiments and analogy to simpler 
problems is necessary; unfortunately, by being so specific, rarely can the results be generally applicable. Luckily, there 
exist more than a few cases for which general theory can be established under a set of reasonable assumptions, and from 
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which analytical or semi-analytical solutions are realistically obtainable and verifiable using relatively straightforward 
experiments. Slender structures subjected to axial flow are one class of problems that fit these criteria.  

The simplest examples of slender structures involving flow are pipes, cylinders, plates and shells. Idealized though they 
may be, these systems are in many cases directly applicable to common real-life uses such as pipelines, heat exchangers 
and fuselages. Moreover, their usefulness in establishing benchmarks and first estimates for more complex systems is 
equally important, and constitutes a major motivation for their analysis. Finally and perhaps most importantly according 
to some they are vital in helping to understand the fundamental nature of dynamical systems. 

1.4 Pipes conveying fluid The present work is limited to the dynamics of pipes conveying fluids. Evidently, pipes can be 
found just about anywhere, transporting different kinds of fluid for different purposes. Whether they be utilized in 
reactors, heat exchangers, pipelines, mines, city streets or as the aforementioned garden hose, it is crucial to understand 
under what conditions these pipes will fail and in what way. In addition, more so than any other simple system mentioned 
above, the pipe conveying fluid has become a paradigm in dynamics, a well-understood stepping stone for tackling 
complex systems and gaining fundamental insight into their dynamics.  

Even by restricting oneself to the study of pipes conveying fluid, the possibilities are almost endless, as witnessed by the 
production of several hundred publications over the last 50 years, with still many more emerging each year. Pipes 
conveying fluid have been studied using linear models to determine basic characteristics, and sophisticated non-linear 
models to predict complex motions, in some cases breaking down into chaos. They have been utilized to develop new 
methods of analysis, ranging from the purely analytical, to the semi-analytical, to the purely numerical. In short, research 
on pipes conveying fluid continues to fuel the imagination, while proving the usefulness of understanding fundamentals in 
a practical world. 

1.5 Objective The main objective of the thesis is to implement numerical solutions method, more specifically the Finite 
Element Analysis (FEA) to obtain solutions for different pipe configurations and fluid flow characteristics. The governing 
dynamic equation describing the induced structural vibrations due to internal fluid flow has been formed and discussed. 
The governing equation of motion is a partial differential equation that is fourth order in spatial variable and second order 
in time. The analytic approach is used to find natural frequencies of cylindrical beam with different boundary conditions 
and further verified by using Ansys 15.0. Further, how various parameters like velocity of fluid affects the natural 
frequency of pipe and involve in the dynamic instability of the pipe has also been discussed.  

II. Fundamentals of Flow Induced Vibration In Pipes Conveying Fluids 

2.1 Defining the pipe conveying fluid The pipe conveying fluid is one of many dynamical systems consisting of axially 
moving continua, a class of problems involving momentum transport that also includes high speed magnetic and paper 
tapes, aerial cable tramways, band-saw blades, power transmission chains and belts and extrusion processes. In being 
relatively easy to understand, model and conduct experiments on, the pipe conveying fluid can be employed to display a 
wide array of interesting yet fundamental dynamical behaviour. Consequently, it can be used to glean generic but 
important characteristics of more complex systems involving flowing fluid, such as shells or cylinders in axial flow, or 
other similar problems. For these reasons has the pipe conveying fluid come to be considered a model dynamical problem.  

A pipe conveying fluid, depicted in Fig. 2.1, is, effectively a hollow, flexible beam transporting fluid from one end to the 
other. The pipe is slender, implying that its length is on the order of 20 times greater than its diameter (L/D≥20), and has a 
considerable thickness when compared to the diameter, thereby differing from its relative the cylindrical shell. In general, 
the pipe may be either extensible or inextensible; however, this discussion will be restricted to the latter. Finally, the 
movement of the pipe is assumed to be restricted to a plane. The pipe may thus be modelled as an Euler-Bernoulli beam; in 
more complicated cases, resorting to the Timoshenko beam theory may become necessary. 

 

Figure 2.1 Diagram of a pipe conveying fluid, positively clamped at the upstream end and clamped with axial 
sliding permitted at the downstream end. 
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2.2 Studying the pipe conveying fluid Though there exist several motivations for the investigation of a pipe conveying 
fluid, the primary concern is nearly always that of stability: specifically, under what conditions will the system become 
unstable and therefore exhibit often undesirable or even catastrophic behaviour? A linear model for the pipe can usually 
accurately predict its most important stability characteristics, as well as indicate what kind of circumstances need to be 
avoided to conserve stability. However, to explore the more complicated and arguably more interesting – features of the 
system, including the amplitude, the type of motion, the detailed nature of the instability, or the post-instability behaviour, 
a non-linear model is absolutely essential. The theoretical scope of this thesis is linear in nature, with references to non-
linear behaviour appearing only briefly and superficially; for a detailed discussion of the non-linear dynamics of pipes 
conveying fluid. 

2.3 Added Mass Effect It is a phenomenon in which the fluid flow inside a pipe exerts a force due to the mass of fluid 
entrained by the cylinder. This force is called added mass or hydrodynamic mass and it acts in the direction of fluid 
acceleration. The fluid added mass increases the effective structural mass for dynamic analysis. The magnitude of the 
effect depends on the density of fluid relative to the mass of structure. 

2.4 Equation of Motion for Pipe Conveying Fluid A fluid flows through the pipe at pressure ‘p’ and density ρ at a 
constant velocity ‘v’ through the internal pipe cross-section of area ‘A’. As the fluid flows through the internal pipe it is 
accelerated, because of the changing curvature of the pipe and the lateral vibration of the pipeline. The vertical component 
of fluid pressure applied to the fluid element and the pressure force F per unit length applied on the fluid element by the 
tube walls oppose these accelerations. Referring to figure (2.2), balancing the forces in the Y direction on the fluid element 
for small deformations, gives 

F - ρA
2

2

x

y



  = ρA(
t


+ v 

x


)2 Y    (2.1) 

 

Figure 2.2 Pinned-Pinned Pipe Carrying Fluid 

The pressure gradient in the fluid along the length of the pipe is opposed by the shear stress of the fluid friction against the 
tube walls. The sum of the forces parallel to the pipe axis for a constant flow velocity gives 

A
x


+ ψS = 0     (2.2) 

Where S is the inner perimeter of the pipe, and ' is the shear stress on the internal surface of the pipe. The equations of 
motions of the pipe element are derived as follows. 
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Where Q is the transverse shear force in the pipe and T is the longitudinal tension in the pipe. The forces on the element of 
the pipe normal to the pipe axis accelerate the pipe element in the Y direction. For small deformations, 
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Where m is the mass per unit length of the empty pipe. The bending moment M in the pipe, the transverse shear force Q 
and the pipe deformation are related by  
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Combining all the above equations and eliminating Q and F yields: 
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The shear stress may be eliminated from equation 3.2 and 3.3 to give: 

x
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 )(
 = 0     (2.7) 

At the pipe end where x=L, the tension in the pipe is zero and the fluid pressure is equal to ambient pressure. Thus ρ =T=0 
at x=L,  

ρA -T = 0     (2.8) 

The equation of motion for a free vibration of a fluid conveying pipe is found out by substituting ρA -T = 0 from equation 
2.8 in equation 2.6 and is given by the equation: 
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Where the mass per unit length of the pipe and the fluid in the pipe is given by M = m + ρA. The next section describes the 
forces acting on the pipe carrying fluid for each of the components of equation (2.9). 

 

Figure 2.3 Force due to Bending 

Representation of the First Term in the Equation of Motion for a Pipe Carrying Fluid 

The term EI
4

4

x

y




is a force component acting on the pipe as a result of bending of the pipe. Figure (2.3) shows a schematic 

view of this force F1. 
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Figure 2.4 Force that Conforms Fluid to the Curvature of Pipe 

Representation of the Second Term in the Equation of Motion for a Pipe Carrying Fluid 

The term ρAv2
2

2

x

y




is a force component acting on the pipe as a result of flow around a curved pipe. In other words the 

momentum of the fluid is changed leading to a force component F2 shown schematically in Figure (2.4) as a result of the 
curvature in the pipe. 

 

Figure 2.5 Coriolis force 

Representation of the Third Term in the Equation of Motion for a Pipe Carrying Fluid 

 

Figure 2.6 Inertia Force 

Representation of the Fourth Term in the Equation of Motion for a Pipe Carrying Fluid 

The term M
2

2

t

y




is a force component acting on the pipe as a result of Inertia of the pipe and the fluid owing through it. 

Figure (2.6) shows a schematic view of this force F4. 

2.5 Solution For Equation Of Motion Of Cylindrical Pipes Using Galkerin’s Method 

For a single-span pipe conveying fluid, the equation based on beam theory is given by:  
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Where as , EI- Flexural Rigidity Of Cylindrical Beam  

U- Steady State Velocity of Fluid  

M- Mass of Fluid Flowing in Pipe per unit length (ρA)  
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 A- Cross-sectional rea of pipe  

m- Mass of pipe per unit length 

The equation of motion can be written in the following non-dimensional form: 

   + 2Mru0   ′ +(u0
2) ′′+  ′′′′ = 0    (2.10) 
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Mr =(non- dimensional mass ratio) = 
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U0  = (non- dimensional velocity ratio) = UL
EI
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The motion equation above is in-homogeneous. Then we discretize Eq. (2.10) using the Galerkin’s method. Let 

 (ξ,τ) = 


1i

 i(ξ)qi(τ)     (2.11) 

qi(τ) is an generalized coordinate,  i(ξ) is an comparison function which satisfies all the boundary conditions. Selecting the 

first three orders conducts researches, which is 

 (ξ,τ) = 


3

1i

 i(ξ)qi(τ) 

For pinned at both ends of pipes, its vibration model function is:  

 i=√2sin( i,ξ ),   i = 1,2,3   (2.12) 

Where λ1, λ2 and λ3 are beam eigenvalues  λ1 = Π  λ2 = 2Π and λ3 = 3Π 

 For fixed at both ends of pipes, its vibration model function is: 

  i = cosh(𝜆i𝜉) - cos(𝜆i𝜉) + 
         –        

                
[sin(𝜆i𝜉) - sinh(𝜆i𝜉)], i=1,2,3   (2.13) 

Where λ1 = 4.7300, λ2 = 7.8532, λ3 = 10.9956 

For fixed at one end and pinned at other end of pipes, its vibration model function is: 

 i = cos(𝜆i𝜉) - cosh(𝜆i𝜉) - 
        –         

                
[sin(𝜆i𝜉) - sinh(𝜆i𝜉)], i=1,2,3   (2.14) 

Where λ1 = 3.9267, λ2 = 7.0686, λ3 = 10.2102  

For cantilever pipe, its vibration model function is: 

 i = cosh(𝜆i𝜉) - cos(𝜆i𝜉) + 
                

                
 [sin(𝜆i𝜉) - sinh(𝜆i𝜉)], i=1,2,3   (2.15) 
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Where λ1 = 1.87512, λ2 = 4.6941, λ3 = 7.85476  

Equation (2.11) is changed into matrix type, 

Supposing 𝜙 = (

   
  
  

)    Q = (

   
  
  

)  then 

 (ξ,τ) = 𝜙T Q = QT𝜙                                                                                                            (2.16) 

Plugging equation (3.16) into (3.10), and supposing H = 𝑢02+Π, then:  

𝜙T𝑄 + 2Mru0𝜙′T�̇� + 𝐻𝜙′′T𝑄 + 𝜙′′′′T𝑄 = 0                                                             (2.17) 

By multiplying 𝜙 = (

   
  
  

) with two sides of (3.17) and then   

𝜙𝜙T�̈� + 2Mru0𝜙𝜙′T�̇�+𝐻𝜙𝜙′′T𝑄 + 𝜙𝜙′′′′𝑇𝑄 = 0                                                    (2.18) 

Conducting ξ integral to (3.18) at interval [0, 1], and substitutions based on orthogonally of trigonometric function: 

∫      

 
dξ = I = (

 
 

 

) 

∫     

 
dξ = B = (

         

         

         

) 

∫     

 
dξ = C = (

         
         
         

) 

𝜙1, 𝜙2 and 𝜙3 are the first three mode functions for specific boundary conditions.  

For pinned at both ends of pipes, the matrix B and C are: 

B = (
         

           
     

)             C = (
     
      
      

) 

For pinned at both ends of pipes, the matrix B and C are: For fixed at both ends of pipes, the matrix B and C are: 

B = (
         

              
        

)             C = (
              

          
               

) 

For fixed at one end and pinned at other end of pipes, the matrix B and C are: 

B = (
              

              
              

)             C = (
                    
                     
                    

) 

For cantilever pipe, the matrix B and C are: 

B = (
                

                
               

)             C = (
                     
                     
                      

) 

Using equations of (2.18), the discretized equation after reduced order through (2.17) is showed below: 

I�̈� +2Mru0𝐵�̇�+ (𝐶𝐻 + ⋀) 𝑄 = 0 (2.19) 
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When �̇� = Ωi, �̈� = −Ω2 and Equation (2.19) become; 

[−IΩ2 + 2Mru0𝐵 Ωi + (𝐶𝐻 + ⋀)] = S =(

         
         
         

) 

Where 

S11 = λ1
4 + H 11 + 2Mru0 11Ωi − Ω2 

S12 = 𝐻 12 + 2Mru0 12Ωi 

S13 = 𝐻 13 + 2Mru0 13Ωi 

S21 = 𝐻 21 + 2Mru0 21Ωi 

S22 = λ2
4 + 𝐻 22 + 2Mru0 22Ωi − Ω2 

S23 = 𝐻 23 + 2Mru0 23Ωi 

S31 = 𝐻 31 + 2Mru0 31Ωi 

S32 = 𝐻 32 + 2Mru0 32Ωi 

S33 = λ3
4 + 𝐻 33 + 2Mru0 33Ωi − Ω2 

III. DYNAMIC ANALYSIS OF PIPES CONVEYING FLUID BY ANALYTICAL AS WELL AS COMPUTATIONAL 
APPROACH 

3.1 Problem Description 

A straight slender cylindrical pipe made up of aluminium with hollow surface from inside with water flowing 
inside a pipe with steady velocity. The following parameters of pipe are given below: 

Length of the pipe (L) = 1m 

Inside diameter of pipe (D0) = 0.011m 

Thickness of the pipe (t) = 0.0011m 

Mass per unit length of pipe (m) = 0.113 Kg/m  

Mass of water per unit length of pipe flowing inside a pipe (ρA) = 0.095 Kg/m  

Area moment of inertia of pipe (I) = 7.716× 10−10 m4 

Density of aluminium (𝜌𝐴𝑙) = 2700 Kg/m3 

Modulus of elasticity for Al (E) = 68.9 GPa  

Poisson ratio of Al pipe (𝜇) = 0.33Velocity of fluid (U) = 7.0151 m/s 

The various dimensionless parameters can be define as:  

  Mass ratio (𝛽) = 
  

      
 

  Dimensionless frequency (Ω) =   
 
√

 

  

           



            INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)                 E-ISSN: 2395-0056 

                  VOLUME: 06 ISSUE: 08 | AUG 2019                   WWW.IRJET.NET                                                                                                 P-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 1251 
 

 

Fig. 3.1: Model of Cylindrical Pipe 
 

  Velocity ratio (Vr) = UL√
  

  
 

3.2 Assumptions made 

The following assumptions are taken for the cylindrical pipe problem: 

1. Neglecting the effect of gravity. 

2. The pipe considered to be horizontal. 

3. Neglecting the material damping. 

4. The pipe is inextensible. 

5. Neglecting the shear deformation and rotary inertia. 

6. All motion considered small. 

7. Neglecting the velocity distribution through the cross-section of the pipe. 

8. The flow should be considered as turbulent flow. 

3.3 Natural Frequency and Mode Shape of Cylindrical Pipes without Conveying Fluid 

3.3.1 By using analytical method 

The natural frequency of cylindrical pipe as considered beam is given as: 

  ωn =       
 √

  

   
 

Table (3.1) List for value of (𝛃𝐧𝐋) for different boundary condition: 

Beam 
Configuration 

(β1L)2 
Fundamental mode 

(β2L)2 
Second mode 

(β3L)2 
Third mode 

Pinned-Pinned 9.87 39.5 88.9 
Clamped- Pinned 15.4 50.0 104.0 

Clamped-Clamped 22.4 61.7 121.0 
Clamped-Free 3.52 22.0 61.7 

 

The analytical values for natural frequency of pipe with different boundary conditions for the above problem are 
shown in the table given below: 
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Table (3.2) List of Natural Frequency for Different Boundary Condition by Using Analytical Method 

Beam 

Configuration 

Fundamental 

Frequency (in Hz) 

Second Frequency 

(in Hz) 

Third Frequency 

(in Hz) 

Pinned-Pinned 34.072 136.36 306.89 

Clamped- Pinned 53.16 172.603 359.015 

Clamped-Clamped 77.33 212.99 417.7 

Clamped-Free 12.15 75.94 212.99 

  
3.3.2 By using computational method 

The pipe mode shape and natural frequency is calculated using ANSYS 15.0.The solver used in this is 
ANSYS Workbench and the value of natural frequency and mode shape found for different boundary 
condition are listed in the table given below: 

 

Fig. 3.2: Fundamental natural frequency and mode shape for pinned-pinned pipe 
 

 

 

 

 

 

 

 

 

 

Fig. 3.3: Second natural frequency and mode shape for pinned-pinned pipe 
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Fig. 3.4: Third natural frequency and mode shape for pinned-pinned pipe 

 

 

 

 

 

 

 

 

Fig. 3.5: Fundamental natural frequency and mode shape for clamped-pinned pipe 
 

 

Fig. 3.6: Second natural frequency and mode shape for clamped-pinned pipe 
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Fig. 3.7: Third natural frequency and mode shape for clamped-pinned pipe 
 

 

Fig. 3.8: Fundamental natural frequency and mode shape for clamped- clamped pipe 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9: Second natural frequency and mode shape for clamped-clamped pipe 
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Fig. 3.10: Third natural frequency and mode shape for clamped-clamped pipe 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Fig. 3.11: Fundamental natural frequency and mode shape for clamped-free pipe 

 

 
Fig. 3.12: Second natural frequency and mode shape for clamped-free pipe 
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Fig. 3.13: Third natural frequency and mode shape for clamped-free pipe 
 

Table (3.3) List of Natural Frequency for Different Boundary Condition by Using Computational Method 

Beam 
Configuration 

Fundamental 
Frequency (in Hz) 

Second Frequency 
(in Hz) 

Third Frequency 
(in Hz) 

Pinned-Pinned 35.231 139.041 301.66 

Clamped- Pinned 50.201 179.041 355.66 
Clamped-Clamped 80.289 215.084 408.84 

Clamped-Free 14.936 78.87 219.459 

 
3.4 Natural Frequency and Mode Shape of Cylindrical Pipes With Conveying Fluid 

3.4.1 By Using Analytical Method 

For determining the natural frequency of the cylindrical pipe conveying water for different boundary condition are 
by using Galkerin’s Method mentioned in section 3.5. The characteristic equations for non- dimensional natural 
frequency for different boundary condition are given below: 

For clamped-pinned condition, the characteristic equation is: 

−Ω6 + 13535.92Ω4 − 29949559.81Ω2 + 6216757740 = 0 

For clamped-clamped condition, the characteristic equation is: 

Ω6 − 22463.9336Ω4 + 91059863.11Ω2 − 45620927850 = 0 

For clamped-free condition, the characteristic equation is: 

Ω6 − Ω4 (5825.29 + 425.33𝑖) + Ω2 (3696994.086 + 897956𝑖) − (50984595.61 + 85574547𝑖) = 0 

Whereas Ω is non-dimensional natural frequency and actual natural frequency is calculated from the formulae is given 
below: 

Dimensionless frequency (Ω) = ωL2√
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By solving these six degree equations the natural frequency of cylindrical pipe for different boundary conditions is listed in 
the table given below: 

Table (3.4) List of Natural Frequency for Different Boundary Condition by Using Analytical Method 

Beam 
Configuration 

Fundamental 
Frequency (in Hz) 

Second Frequency 
(in Hz) 

Third Frequency 
(in Hz) 

Clamped- Pinned 14.21 48.03 101.24 
Clamped-Clamped 19.74 54.91 107.78 

Clamped-Free 4.254 21.96 58.42 

 
3.4.2 By Using Computational Method 

The pipe mode shape and natural frequency is calculated using ANSYS 15.0.The solver used in this is ANSYS 
Workbench and the value of natural frequency and mode shape found for different boundary condition are listed in 
the table given below: 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14: Fundamental natural frequency and mode shape for clamped-pinned pipe 

 

Fig. 3.15: Second natural frequency and mode shape for clamped-pinned pipe 
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Fig. 3.16: Third natural frequency and mode shape for clamped-pinned pipe 

 

 Fig. 3.17: Fundamental natural frequency and mode shape for clamped- clamped pipe 

Fig. 3.18: Second natural frequency and mode shape for clamped-clamped pipe 
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Fig. 3.19: Third natural frequency and mode shape for clamped-clamped pipe 

 
Fig. 3.20: Fundamental natural frequency and mode shape for clamped-free pipe 

 

 

Fig. 3.21: Second natural frequency and mode shape for clamped-free pipe 
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Fig. 3.22: Third natural frequency and mode shape for clamped-free pipe 
 

Table (4.5) List of Natural Frequency for Different Boundary Condition by Using Computational Method  

Vr = 0.7015 and 𝜷 = 𝟎. 𝟒𝟎𝟏𝟒𝟓 for aluminium pipe 

Beam 

Configuration 

Fundamental 

Frequency (in Hz) 

Second Frequency 

(in Hz) 

Third Frequency 

(in Hz) 

Clamped- Pinned 15.201 49.041 101.66 

Clamped-Clamped 20.289 55.084 108.84 

Clamped-Free 4.936 25.87 59.459 

 
3.5 ANSYS CFX Fluid Model for Cylindrical Pipe with Conveying Fluid 

The ANSYS 15.0 CFX solver uses finite elements to discretize the domain. Large eddy simulation (LES) is used as a 
turbulence model. The largest eddies, having dynamic and geometric properties related to the mean fluid flow; contain 
more energy than the smallest eddies. The LES approach makes use of this fact by applying spatial filters to the governing 
equations to remove the smallest eddies while the large eddies are numerically simulated. LES does take more computation 
than the commonly used Reynolds averaged Navier-Stokes (RANS) turbulence models, but RANS models do not resolve the 
turbulent pressure fluctuations responsible for the pipe vibration of interest. 

The next step of the analysis involves applying the appropriate boundary and Initial conditions. The cylindrical surface of the 
domain is defined as a solid wall with the no-slip, smooth wall pipes condition being enforced. The periodic boundary will let 
the flow develop as it effectively re-enters the inlet each time it has passed through the entire domain. 

Pressure distributions in a pipe conveying fluid (water) along the length of wall pipe is shown in figure 3.22 as shown 
below: 

Fig. 3.23: Pressure Distribution along the wall of Pipe 
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3.6 Structural analysis of cylindrical pipe 

The structural model of the pipe was created using ANSYS 15.0. This model experiences transient deformation in response 
to pressure fluctuations calculated by the fluid model. It uses the finite element method (FEM). The physical properties like 
modulus of elasticity (E) and Poisson’s ratio is defined in engineering material sub-section and the fluid pressure results 
obtained from the ANSYS CFX V15.0 can be mapped into ANSYS Structural workbench V15.0 as imported pressure loading 
for the static stress analysis. After that, boundary condition is applied. The result obtained for von-mises stress, von-mises 
strain and total deformation for pinned-clamped condition is shown below: 

 

Fig. 3.24: Equivalent von-mises stress for clamped –pinned pipe 

 

Fig. 3.25: Equivalent von-mises strain for clamped-pinned pipe 
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Fig. 3.26: Total deformation for clamped-pinned pipe 

V. RESULTS AND DISCUSSIONS 

4.1 Natural Frequency and Mode Shape 

The calculated values for first three lowest natural frequencies by using analytical method of the cylindrical pipe 
conveying fluid (water) are presented in table (). By, comparing with the computational value there is a slight error but 
shows good agreement between these two. Comparison of natural frequencies by these two methods and percentage error 
is shown in the table given below: 

Table (5.1) Comparison and percentage error of natural frequency for a pipe conveying fluid by using analytical and 
computational method 

Boundary Condition Mode No. Natural Frequency % Error 

Analytical ANSYS 

Clamped - Pinned 1 14.21 15.201 6.974 

2 48.03 49.041 3.105 

3 101.24 101.66 2.415 

Clamped - Clamped 1 19.74 20.289 2.78 

2 54.91 55.084 3.317 

3 107.78 108.84 4.984 

Clamped - Free 1 4.254 4.936 16.032 

2 21.96 25.87 17.81 

3 58.42 59.459 3.78 

 
4.2 Effect of Fluid Velocities on Natural Frequency for Different Boundary Conditions 

The variations of fundamental natural frequency versus velocity of fluid flow for different boundary conditions are shown in 
the figure given below. By increasing flow velocity the natural frequency of pipe decreases for clamped-pinned and 
clamped-clamped boundary conditions. But, for clamped-free pipe this is not true. So, at a certain velocity the natural 
frequency is zero and divergence or buckling occur in the pipe for clamped-pinned and clamped-clamped pipe. For 
cantilever pipe the instability depend on imaginary part of natural frequency. If it is less than zero then, vibration occurs in 
expanding envelope. 
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Fig. 4.1: For Clamped-Pinned Boundary Condition 

 

 

 

 

 

 

 

 

 

 
Fig. 4.2: For Clamped-Clamped Boundary Condition 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.3: For Clamped-Pinned Boundary Condition 
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V. CONCLUSIONS 

• The analytical solution for the pipe conveying fluid is derived in this thesis. And, for different boundary condition 
the natural frequency are obtained analytically in terms of pipe parameters. 

• The natural frequency of pipe conveying fluid depends on the velocity of fluid flow is observed. Increase in fluid 
velocity reduces the natural frequency of cylindrical pipe. 

• At a certain velocity, the instability of pipe is observed. It affects the natural frequency of vibration differently for 
different boundary condition. For, pinned-clamped, pinned- pinned and clamped-clamped the natural frequency is 
zero at the onset of divergence. But, for cantilever type it depends upon imaginary part of natural frequency. 

• The pressure variation along the length of pipe at the wall boundary for turbulent flow cause vibration in pipes 
was observed. 

• This pressure variation along the length of pipe also causes stress, strain and deformation in the pipe. 
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