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Abstract – In this present study, A trigonometric shear 
deformation theory is developed for flexural analysis of beams, 
in which number of variables are same as that in first-order 
shear deformation theory. The sinusoidal function is used in 
displacement field in terms of thickness coordinate to 
represent the shear deformation effect and satisfy the zero 
transverse shear stress condition at top and bottom surface of 
the beam. The Governing differential equation and boundary 
condition of the theory are obtained by using principle of 
virtual work. The fixed beam subjected to uniformly 
distributed load is examined using present theory. The 
numerical results obtained are compared with those of 
Elementary, Timoshenko and Higher-order shear deformation 
theory and the available solution in the literature.   
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1. INTRODUCTION 
 
      It is well-known that elementary theory of bending of 
beam based on Euler-Bernoulli hypothesis that the plane 
sections which are perpendicular to the neutral axis before 
bending remain plane and perpendicular to the neutral axis 
after bending, implying that the transverse shear and 
transverse normal strains are zero. Thus, the theory 
disregards the effects of the shear deformation. It is also 
known as classical beam theory. The theory is applicable to 
slender beams and should not be applied to thick or deep 
beams. When elementary theory of beam (ETB) is used for 
the analysis thick beams, deflections are underestimated and 
natural frequencies and buckling loads are overestimated. 
This is the consequence of neglecting transverse shear 
deformations in ETB. 

Bresse [1], Rayleigh [2] and Timoshenko [3] were the 
pioneer investigators to include refined effects such as 
rotatory inertia and shear deformation in the beam theory. 
Timoshenko showed that the effect of transverse vibration of 

prismatic bars. This theory is now widely referred to as 
Timoshenko beam theory or first order shear deformation 
theory (FSDT) in the literature.  In this theory transverse 
shear strain distribution is assumed to be constant through 
the beam thickness and thus requires shear correction factor 
to appropriately represent the strain energy of deformation. 
To remove the discrepancies in classical and first order 
shear deformation theories, higher order or refined shear 
deformation theories were developed and are available in 
the open literature for static and vibration analysis of beam. 
Levinson [4], Bickford [5], Rehfield and Murty [6], Krishna 
Murty [7], presented parabolic shear deformation theories 
assuming a higher variation of axial displacement in terms of 
thickness coordinate. These theories satisfy shear stress free 
boundary conditions on top and bottom surfaces of beam 
and thus obviate the need of shear correction factor. There is 
another class of refined theories, which includes 
trigonometric function to represent the shear deformation 
effects through the thickness. Vlasov and Leontev [8], Stein 
[9] developed refined shear deformation theories for thick 
beams including sinusoidal function in terms of thickness 
coordinate in displacement field. However, with these 
theories shear stress free boundary conditions are not 
satisfied at top and bottom surfaces of the beam. Further 
Ghugal and Dahake [10] developed a trigonometric shear 
deformation theory for flexure of thick beam or deep beams 
taking into account transverse shear deformation effect. The 
number of variables in the present theory is same as that in 
the first order shear deformation theory.  The trigonometric 
function is used in displacement field in terms of thickness 
coordinate to represent the shear deformation effects. A 
study of literature by Ghugal and Shimpi [11] indicates that 
the research work dealing with flexural analysis of thick 
beams using refined trigonometric and hyperbolic shear 
deformation theories are very scarce and is still in infancy. In 
this paper, a trigonometric shear deformation theory is 
developed for flexural analysis of thick beams. The theory is 
applied to a fixed beam to analysed the axial displacement, 
Transverse displacement, axial bending stress and 
transverse shear stress. The numerical results have been 
computed for various length to thickness ratios of the beams 
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and the results obtained are compared with those of 
Elementary, Timoshenko, and higher-order shear 
deformation theory and with the available solution in the 
literature.  

2. Formulation of problem 

The beam under consideration as shown in Fig. (1). occupies 
in O-x-y-z Cartesian coordinate system the region: 

0 ≤ x ≤L                       - b/ 2 ≤ y ≤ b/ 2                   - h /2 ≤ z ≤ h/2 

where x, y, z are Cartesian coordinates, L and b are the length 
and width in the x and y directions respectively, and h is the 
thickness of the beam. The beam is made up of 
homogeneous, linearly elastic isotropic material with the 
principal material axes parallel to the x and y axes in the 
plane of beam. The plate material obey’s generalized Hook’s 
law. 

 
Figure1: Beam under bending in x-z plane 

 

2.1 Assumptions made in the theoretical formulation 
 

1. The axial displacement (u) consist of two parts: 

                 (a) Displacement given by elementary theory of 
bending. 

         (b) Displacement due to shear deformation, which is 
assumed to be hyperbolic in nature with respect to thickness 
coordinate, such that maximum shear stress occurs at 
neutral axis as predicted by the elementary theory of 
bending of beam. 

2. The axial displacement (u) is such that the resultant of in 
plane stress (σx) acting over the cross-section should result 
in only bending moment and should not in force in x 
direction. 

3. The transverse displacement (w) in z direction is assumed 
to be function of x coordinate. 

4. The displacements are small as compared to beam 
thickness. 

5. The body forces are ignored in the analysis. (The body 
forces can be effectively taken into account by adding them 
to the external forces.) 

6. One dimensional constitutive law’ are used. 

7. The beam is subjected to lateral load only.   

 

 

 

2.2 The Displacement Field 

 

Based on the above mention assumptions, the displacement 
field of the present beam theory can be expressed as follows. 
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Where, 
u = Axial displacement in x direction which is function of x 
and z. 
w = Transverse displacement in z direction which is function 
of x. 

 = Rotation of cross section of beam at neutral axis which is 

function of x. 
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Where E and G after elastic constant of the beam material. 
 
2.3 Governing Differential Equation 
 
Governing differential equations and boundary conditions are 
obtained from Principle of virtual work. Using equations for 
stresses, strains and principle of virtual work, variationally 
consistent differential equations for beam under 
consideration are obtained. The principle of virtual work 
when applied to beam leads to: 
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Where δ = variational operator 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 08 | Aug 2019                   www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.34       |       ISO 9001:2008 Certified Journal       |     Page 747 
 

Employing Green's theorem in equation (7) successively we 
obtain the coupled Euler Lagrange’s equations which are the 
governing differential equations and associated boundary 
conditions of the beam. The governing differential equations 
obtained are as follows. 
 

 
4 3

04 3

w
EI A q x

x x

 
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                                                (8)                                                                           
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Where A0, B0 and C0 are the stiffness coefficients in 
governing equations. The associated consistent natural 
boundary conditions obtained are of following form along 
the edges x = 0 and x = L. 
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Where w is prescribed 
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Where    is prescribed. 
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Where is Prescribed. 
 
2.4 The General solution of Governing equilibrium 
equations of beam:  
 
The general solution for transverse displacement w(x) and  
(x) can be obtained from Eqn. (8) and (9) by discarding the 
terms containing time (t) derivatives. Integrating and 
rearranging the Eqn. (8), we obtained the following equation, 
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                                                     (13)                                                                                 
where, Q(x) is generalized shear force for beam and it is given 
by, 
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                                                           (14)                                                                              

And by rearranging second governing Eqn. (9) the following 

equation is obtained. 
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Now a single equation in terms of  is obtained, by putting 
the Eqn. (3.8) in second governing Eqn. (15) 
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The equation of transverse displacement w(x) is obtained by 
substituting the expression of  (x) in Eqn. (15) and 

integrating it thrice with respect to x. The general solution for 
w(x) is obtained as follows: 
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52 3 636 4 2λ
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where C1, C2, C3, C4, C5 and C6 are the constants of 
integration and can be obtained by imposing natural (forced) 
and kinematic boundary conditions of beams. 
 

3. Illustrative Example 
 

In order to prove the efficiency of the present theory, the 
following numerical examples are considered. The following 
material properties for beam are used. Material properties: 

1. Modulus of Elasticity E = 210 GPa 
2. Poisson’s ratio µ = 0.30 
3. Density = 7800 kg/m3 

 
A. fixed beam with load 
 
The beam has its origin on left hand side support and is fixed 
at x = 0 and x = L. The beam is subjected to distributed load,  

on surface z = +h/2 acting in downward z direction with 
minimum intensity of load  

 

                

Figure 2: Fixed beam with load 

 

Boundary conditions associated with this problem are as 

follows: 

At fixed end: x=0, L 

  0q x q

0q

0q

  0q x q

0q
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General Expressions obtained for w(x) and (x) are as 
follows. 
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Expression for Non-Dimensional Axial Displacement ( ), 

Axial Stress ( ) , Maximum Transverse Shear Stresses ( ) 

and ( ) are as follows.  
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4. Numerical Result 

The numerical results for axial displacements, transverse 
displacements, bending stress and transverse shear stress 
are presented in following non dimensional form and the 
values are presented in table 1 and table 2. 
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Table 1: Non-Dimensional Axial Displacement ( ) at (x 
=0.75L, z = h/2), Transverse Deflection ( ) at (x = 0.75L, z = 
0.0), Axial Stress ( ) at (x = 0, z = h/2), Maximum Transverse 

Shear Stresses ( ) and ( ) at (x = 0:01L, z = h/2) of  Fixed  
Beam Subjected to Varying Load for Aspect Ratio 4.  

 

Source Model w  u  x
 

CR

zx
 

EE

zx
 

Present TSDT 3.48 2.65 -2.68 1.58 97.96 

Dahake HSDT 3.48 4.21 -2.52 0.08 142.07 

Timoshenko FSDT 2.00 1.04 -2.78 0.23 2.94 

Bernoulli-
Euler 

ETB 0.17 1.04 -2.78 - 2.94 

 

Table 2: Non-Dimensional Axial Displacement ( ) at (x 
=0.75L, z = h/2), Transverse Deflection ( ) at (x = 0.75L, z = 
0.0), Axial Stress ( ) at (x = 0, z = h/2), Maximum Transverse 

Shear Stresses ( ) and ( ) at (x = 0:01L, z = h/2) of  Fixed  
Beam Subjected to Varying Load for Aspect Ratio 10.  

 

Source Model w  u  x
 

CR

zx
 

EE

zx
 

Present TSDT 3.48 1.18 -1.71 3.10 54.51 

Dahake HSDT 3.48 1.18 -1.71 0.02 72.85 

Timoshenko FSDT 2.00 1.63 -1.73 3.73 7.35 

Bernoulli-
Euler 

ETB 0.17 1.63 
 

-1.73 - 7.35 
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Fig 3: Variation of transverse displacements w 

 

 

 

 

 

 

 

 

 

Fig 4: Variation of Maximum Axial displacement u for AS 

04 
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Fig 5: Variation of Maximum Axial displacement u for AS 

10 
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Fig 6: Variation of maximum axial stress  
For AS 04 
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Fig 7: Variation of maximum axial stress  
For AS 10 
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Fig 8: Variation of trans verse shear stress  for AS 04 
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Fig 9: Variation of transverse shear stress  
for AS 10 
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Fig 10:  Variation of transverse shear stress  
for AS 04 
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Fig 11:  Variation of transverse shear stress  
for AS 10 

 
5. CONCLUSIONS 
 

From the static flexural analysis of fixed beam following 
conclusions are drawn: 

 
1. The result of maximum transverse displacement  
obtained by present theory is in excellent agreement with 
those of other equivalent refined theories. The variation of 
AS 04 and AS 10 are present as shown in fig. 3 
2. From figure 4 and 5, it can be observed that, the result of 
axial displacement  for beam subjected to uniformly load 
varies linearly through the thickness of beam of AS 04 and 
AS 10 respectively. 
3. The maximum Non-dimensional axial stress  For AS 06 
and AS 7 varies linearly through the thickness of beam as 
shown in fig.10 and fig. 11 respectively. 

4. The transverse shear stress  and  are obtained 
directly by constitutive relation. Fig. 8, 9, 10, and 11. Shows 
the through thickness variation of transverse shear stress for 
thick beam for AS 04 and AS 10. From this fig. it can be 
observed that, the transverse shear stress satisfies the zero 
condition at top and at bottom surface of the beam.  
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