

Study the behavior of the Trapezoidal PSC Box Girder by using Single and double cell with the help of IRC and AASHTO Codes

Roshani Mehta¹, Prof R.S Patil²

¹P.G. Student Deogiri Institute of Engineering and management studies-431002, Maharashtra, India. ²AssociateProfessor, the Department of civil Engg. Deogiri Institute of Engineering and Management Studies, Aurangabad-431002, Maharashtra, India.

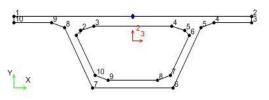
Abstract - Bridges are an essential part of the infrastructure of any city. Now a days Bridges are designed by the different software such as Staad pro, Medas Civil, Sap2000 etc. The latest Practice for designing the bridge shows the number of Consultants is preferred box girder bridges instead of regular bridges, where prestress box girder is most suitable option because of its economy, stability, structural efficiency and serviceability. This paper presents an investigation on behaviour of curved PSC box girder bridge by the use of IRC and AASHTO code. This analysis part explains the different behaviour of the PSC curved box girder by using single and double cell and response is recorded, plotted in table for all two girders and the results are discussed in graphs with code comparison.

Key Words: Horizontally Curved Psc Box Girders, Aashto Code, Irc: 6-2014 Code, Csi Bridge Software.

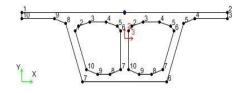
1.INTRODUCTION

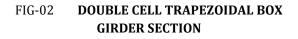
The Importance of Bridges as Vital Elements of Transportation Lifelines Cannot Be **Over** Emphasized. Bridges and Tunnels Are the Costliest and Strategic Elements of Highways and Railways. Horizontally Curved Concrete Box Girder Are Widely Used in Construction of Highway Bridges. Horizontally Curved Bridges Are the Most Feasible Options at Complicated Interchanges or River Crossings Where Geometric Restrictions and Constraint of Limited Site Space, Make Difficult the Adoption Of Standard Straight Superstructures. Usually These Bridges Are of Cellular Cross-Section So That High Torsional Moment Can Be Well Resisted Economically. Contrary to Straight Bridges. Finite Element Method Is Most Suitable for Analysis of Such

Type of Problem, But Looking to The Complexity Involved In Use Of Finite Element Method, The Designer Involved In The Process Of Bridge Designing Need Some Simplified Solution To Solve The Problem. Prestress Concrete Bridge Is Good Option to Have Higher Durability with Minimum Maintenance As Compared To Other Bridges. Box Girder Is Ideally Suited for Longer Span In Prestress Bridge. However, Sometimes Due To Highway Alignment Layout And Site Restrictions, It Becomes Necessary To Provide Supports For The Curved Bridges And These Bridges Are Referred To As Curved Bridges. In Addition To Overcoming These Geometrical Constrains, Construction Of Curved Box-Girder Bridges Is Becoming Increasingly Popular For Economic And Aesthetic Reasons.Most of The Prestress Concrete Bridges in India Are Designed for The Loading by Indian Road Congress Which Is Recently Revised In 2014. It Is Necessary to Check Reliability of Irc With American Association of State Highway and Transportation Association (Aashto-LRFD) Code as It Is Mostly Used and Accepted by Many Parts Of The World. The Present Study Is About Comparative Analysis and Design of Various Box Girders For 45m Span Using Irc:6-2014 And Aashto- LRFD. Typical Post-Tensioned Prestressed Concrete Box Girders as Single Cell & Double Cell, Single Cell Rectangular Are Taken for Study with Same Span, Depth, Intensity of Loading and Material Properties in This Paper. Csi Bridge Software Which Is Based on Finite Element Is Used for Analysis And All Girders Are Manually Designed. Loadings Considered in Irc:6-2014 Are as Per Class-A And Class-Aa Whereas Loadings Considered In


www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072


Aashto- LRFD. Analytical Comparison Of Shear Force, Bending Moment And Torsion Has Been Done For Box Girders.

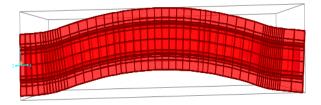

2.Preliminary Data Considered for the **Analysis:**

Total width = 8.5 m Total Depth = 2.3 m Exterior Girder Thickness = 0.305

FIG-01 SINGLE CELL TRAPEZOIDAL BOX GIRDER SECTION

3. FOLLOWING ARE LOADING ON BOX **GIRDER BRIDGE**

- 3.1 **Dead Load (DL)**-Which consist of self-weight of the member on bridges which is calculated by the software itself.
- 3.2 live Load (DL)-Which consist of all the loads acting over the bridge span in the form of Vehicle load such as Trucks, Trailer, Trains etc. of the member on bridges.


These all types of live load consist the following loadings in the form of IRC and Ashto.

- a) Indian Roads Congress Bridge Loading
- A. IRC Class AA Loading

B. IRC Class A Loading 1.2

b) AASHTO (American Association of State Highway Transport Official) Loading.

4. RESULTS: -

FIG: SHOWS THE TOP VIEW OF BOX GIRDER BRIDGE

<u>Table1.</u>	Table1. Displacement					
SR.NO	LOAD	SINGLE CELL	DOUBLE CELL			
	CASE	TRAPEZOIDAL	TRAPEZOIDAL			
		GIRDER	GIRDER			
		(MM)	(MM)			
1.	DEAD	33.6	25.2			
2.	IRC A	7.7	3.5			
3	IRC A-	10.5	4.9			
	А					
4	ASHTO	9.8	4.9			
4	HL 93	5.0	т.7			
	пь 93					

As the result indicate that the when we considered the single cell box girder in that case for the Dead load the displacement value is 33.78 while comparing with the Double cell the double cell box girder having the displacement value is less than that of single cell. While from the results shown in the tabular form it is showing that the displacement value for the all loading cases are less in the double cell while comparing with the single cell box girder bridges.

Table2, Bending Moments

When we consider the different load combinations for the measurement of B.M we can say that after the analysis the bending moments value is more in case of Double cell box girder bridges while comparing with the single cell.

SR.NO	LOAD CASE	SINGLE CELL	DOUBLE CELL
		TRAPEZOIDAL	TRAPEZOIDAL
		GIRDER	GIRDER
		(KNM)	(KNM)

International Research Journal of Engineering and Technology (IRJET)

Volume: 06 Issue: 07 | July 2019

www.irjet.net

5

10

15

20

e-ISSN: 2395-0056 p-ISSN: 2395-0072

174.4763

12836.69

20262.31

23819.91

203.8689

938.0829

1394.21

1619.464

1.	DEAD	16060.00	15694.073
2.	IRC A	2653.78	2687.95
3.	IRC A-A	4447.59	4311.60
4.	ASHTO HL-93	3722.79	3551.7
5.	1.25(DL)+1.75LL (IRC A)	24719.87	28056.33
6.	1.25(DL)+1.75LL (IRC A-A)	27859.05	29748.7
7.	1.25(DL)+1.75LL (ASHTO)	26590.65	29670.75

25 1096.8 2168.9 1582.64 23104.79 30 1983.3 3256.1 1252.788 17599.12 35 2770.6 3794.5 767.832 9349.617 40 3681.1 3888.9 -83.9252 -5638.77 45 -2264.5 3497.5 -935.581 -15727.1

-2222.11

-1335.9

-544.2

272.869

-114.9

-137.1

136.60

965.90

Combinations: For single cell box girder & Single Cell Trapezoidal box girder

A. SINGLE CELL BOX GIRDER

15

20

25

30

35

40

45

01: -1.25(DL) +1.75LL (IRC A)

DISTANCE т 112 0 5 10

V2	Т	M2	M3
 -3126.88	533.7024	-804.167	-18801.9
-2276.89	-380.428	194.0469	-1403.42
-1436	-357.252	879.0736	10563.27
-712.5	-28.423	1303.34	17534.82
47.676	826.5538	1514.169	20771.57
818.844	1918.634	1479.945	20141.45
1654.11	2938.392	1171.718	15052.74
2415.52	3460.834	718.4163	7237.517

03: 1.25(DL)+1.75LL (ASHTO

DISTANCE	V2	Т	M2	M3
0	-3125.45	763.8104	-804.239	-18759.5
5	-2261.69	-268.349	209.9683	-967.939
10	-1410.33	-267.87	957.3237	11518.14
15	-649.816	93.7912	1422.818	18976.85
20	140.103	1004.499	1652.44	22502.96
25	946.526	2155.659	1614.102	21806.17
30	1825.459	3224.549	1276.031	16314.37
35	2622.841	3780.234	781.9081	8028.268
40	3572.774	3911.346	-85.2558	-6525.16
45	-2363.72	3340.209	-851.746	-17456.9

02: 1.25(DL) +1.75LL (IRC A-A)

3295.991

-2370.39

Т

DISTANCE	V2	Т	M2	M3
0	-3117.56	894.4	-804.382	-18507.4

3587.313

3022.192

B. DOUBLE CELL BOX GIRDER

01: -1.25(DL)+1.75LL (IRC A)

DISTANCE	V2	Т	M2	М3
0	-3363.4	-4227.7	11216	-23150

© 2019, IRJET

-84.0617

-851.842

-6771.22

-17561.9

Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal Page 352 T

International Research Journal of Engineering and Technology (IRJET) e-

ET Volume: 06 Issue: 07 | July 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

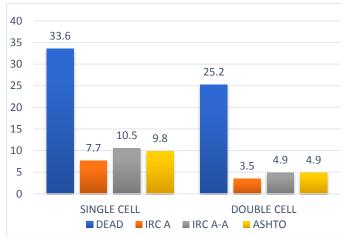
5	-2345.9	-4059.5	-1554	-4955.5
10	-1345.3	-3143.8	-9537	6829.28
15	-489.27	-1838.7	-14373	12849.7
20	406.723	123.642	-16767.	14411.3
25	505.269	2877.84	-16291.	14423.9
30	1487.13	4948.49	-12692	10855.5
35	2384.40	6434.09	-7447	3653.80
40	3421.86	7744.57	2201	-10468.6
45	-1881.4	7503.24	10751	-110.643

10	-1410.33	-267.87	957.32	11518
15	-649.816	93.79	1422	18976
20	140.103	1004.4	1652.44	22502
25	946	2155	1614	21806
30	1825	3224	1276	16314
35	2622	3780	781	8028.
40	3572	3911	-85	-6525
45	-23632	3340	-851	-17456

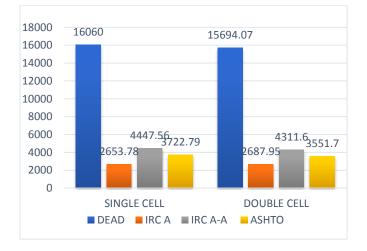
Table No.5 Prestress Calculation Comparison of SingleCell and Double Cell Trapezoidal Box Girder

02: 1.25(DL)+1.75LL (IRC A-A)

DISTANCE	V2	Т	M2	М3
0	-3362	-3995	11215	-23107
5	-2330	-3945	-1541	-4525
10	-1319	-3052	-9470	7776
15	-426	-1714	-14271	14283
20	499	302	-16648	16134
25	632	3115	-16176	16080
30	1658	5234	-12603	12109
35	2591	6752	-7394	4438
40	3698	8068	2201	-10225
45	-1875	7822	10749	-8.27

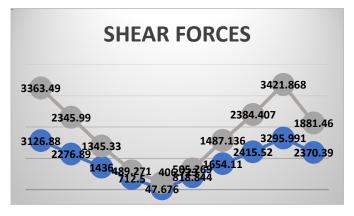

03: 1.25(DL)+1.75LL (ASHTO)

DISTANCE	V2	Т	M2	M3
0	-3125.45	763.84	-804.29	-18759.5
5	-2261.69	-268.349	209.93	-967.939

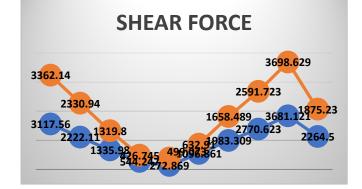

Parameter	Single Cell Trapezoidal Box Girder	Double Cell Trapezoidal Box Girder
fbr.	0.8X18-0 =	0.8X18-0=
	14.4 N/mm ²	14.4N/mm ²
finf	43574.17xE6	45005.19xE6
	0.8x2.83xE9	0.8x3.65xE9
	=19.24 N/mm ²	=15.41 N/mm ²
Pre stress Force		
	4.36XE6X19.24X2.83XE9	
	2.83XE9+(4.36XE6)X700	5.2XE6X15.41X3.65XE
		3.65XE9+(5.22XE6)X7 0
	=4036.168 N/mm ²	=40198.073N/mm ²
FORCE IN ONE TENDON	1.703X10^3	1.703X10^3
NO OF TENDON	24	24

Graph:

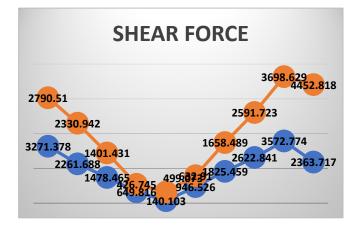
DISPLACEMENT DETIALS:



The above graph shows the displacement values for the all four load cases such as Dead load, IRC A, IRC A-A & Ashto codes.


The above graph shows the Bending moments values for the all four load cases such as Dead load, IRC A, IRC A-A & Ashto codes.

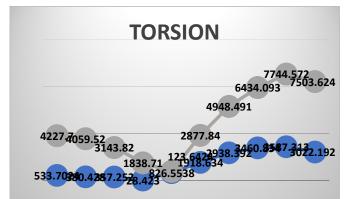
SHEAR FORCE RESULTS FOR DIFFERENT LOAD CASES:


(BLUE - SINGLE CELL, GREEN - DOUBLE CELL)

COMBINATION-(1.25(DL)+1.75LL (IRC A)

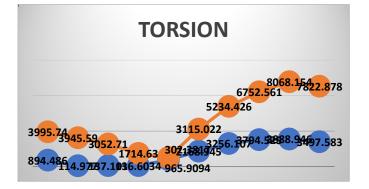
(BLUE – SINGLE CELL, RED– DOUBLE CELL)

COMBINATION-1.25(DL) +1.75LL (IRC A-A)

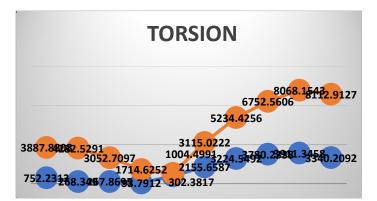


BLUE – SINGLE CELL, RED – DOUBLE CELL

COMBINATION-1.25(DL) +1.75LL (ASHTO)

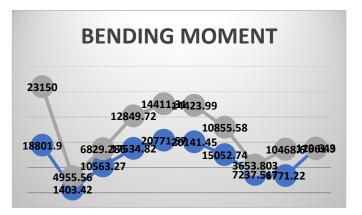

TORSION RESULTS FOR DIFFERENT LOAD CASES:

BENDING MOMENTS DETIALS:

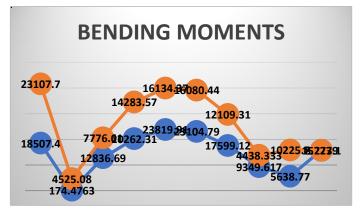

BLUE – SINGLE CELL, GREEN – DOUBLE CELL

COMBINATION-1.25(DL)+1.75LL (IRC A)

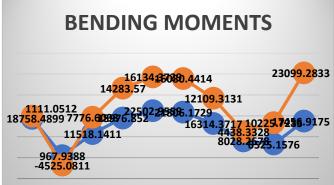
BLUE – SINGLE CELL, RED – DOUBLE CELL


COMBINATION-1.25(DL) +1.75LL (IRC A-A)

BLUE – SINGLE CELL, RED – DOUBLE CELL


COMBINATION-1.25(DL) +1.75LL ASHTO)

MOMENTS RESULTS FOR DIFFERENT LOAD CASES:


BLUE – SINGLE CELL, GREEN – DOUBLE CELL

COMBINATION-1.25(DL)+1.75LL (IRC A)

BLUE – SINGLE CELL, RED – DOUBLE CELL

COMBINATION-1.25(DL) +1.75LL (IRC A-A)

BLUE – SINGLE CELL, RED – DOUBLE CELL

COMBINATION-1.25(DL)+1.75LL (ASHTO)

3. CONCLUSIONS

Following are the conclusion we have obtained from above analysis results are:-

- 1. In case of single cell curved box Girder bridge the Displacement, value is getting higher when it will be compared with the Double cell Curved box girder bridge.as shown in above tables
- 2. But in case of Bending moment the value of curved single cell box Girder bridge is going to be increasing slightly as compared with the Double cell box girder. Refer table for bending moments.
- 3. The results for AASHTO Loading is very less then the IRC A and IRC A-A loadings.
- 4. IRC A-A loading gives the significant required results for which the bridge can be design.
- 5. The behavior of Double cell curved girder is Economical and effective against the different loading for which these bridges are analysis.
- 6. 24 no of tendons are required to resist the moment which are acting due to the self weight and the live load coming from the vehicals.
- 7. The central portion going to be sag when vehical is passing from one location to the another location.

And the prestress tendons are give its resistance to the bridge to get into its original position.

REFERENCES

- [1] Gourav Gajrani, Dr. L. M. Gupta, "Behavior and Analysis of Horizontally Curved Composite Steel Girder Bridge System".
- [2] Mozhdeh Amani, M.M. Alinia, "The flexural behavior of horizontally curved steel I-girder bridge systems and single-girders".
- [3] Mulesh K. Pathak, "Performance of RCC Box type Superstructure in Curved bridges".
- [4] Shruti G Kulkarni, Pradeep A R, "Guruprasad T N, "Static Analysis of RC Box Girder Bridge with skew angles using finite element method".
- [5] Cagri Ozgur, "Behaviour and analysis of a horizonatally curved and skewed I-girder bridge".
- [6] Mohammed Ameen Zaki, "Live load distribution factors for horizontally curved concrete box girder bridges".
- [7] Jose J. Oliveira pedro, Antonio J. Reis, "Nonlinear analysis of composite steel-concrete cable-stayed bridges".
- [8] S.J.Fatemi, M.S. Mohamed Ali, A.H. Sheikh, "Load distribution for composite steel-concrete horizontally curved box Girder Bridge.
- [9] Tanmay Gupta, Manoj Kumar, "Flexural response of skew-curved concrete box-girder bridges".
- [10] Fatmir Menkulasi, Dinesha Kuruppuarachchi, "Development of alternative concrete bridge super structure system for short and medium span bridges".
- [11] R.Shamass, K.A. Cashell, "Analysis of dtsinless steelconcrete composite beam".

- [12] R.L.Pedro, J.Demarche, L.F.F.Miguel, R.H.Lopez, "An efficient approach for the optimization of simply supported steel concrete composite I girder bridges.
- [13] Rodek Wodzinokski, Khaled, Hamdy M.Afefy, "Free vibration analysis of horizontally curved composite concrete-steel I-girder bridge".
- [14] Teng Tong a , Zhao Liu b , Jie Zhang a , Qiang Yu, "Long-term performance of prestressed concrete bridge under the intertwined effect of concrete damage,static creep and traffic-induced cyclic creep".
- [15] Quang-Viet Vu, Duc-Kien Thai, Seung-Eock Kim, "Effect of intermediate diaphragms on the load – carrying capacity of steel – concrete composite box girder bridges".