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Abstract - Private car ownership in the context of the 
ongoing urbanization is creating challenges concerning 
environmental pollution, high energy costs, and limited and 
expensive parking. As a reaction to these negative impacts, 
companies are developing new mobility alternatives to private 
car ownership. One alternative is ridesharing that provides 
individuals with taxis from a fleet on an as-needed basis. The 
objective of taxi ride sharing and carpooling is to share the taxi 
in an efficient way by reducing the time and cost of the 
passengers, which will also reduce the road traffic. Despite the 
potential to provide significant societal and environmental 
benefits, ridesharing has not so far been as popular as expected. 
Notable barriers include social discomfort and safety concerns 
when traveling with strangers. To overcome these barriers, this 
paper propose a new type of Social-aware Ridesharing Group 
(SaRG) queries which retrieves a group of riders by taking into 
account their social connections and spatial proximities. 
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1. INTRODUCTION  
 
 The world faces human-made hazardous weather events 
such as heat waves, droughts, floods and wildfires in 
dimensions which have never been seen before. A crucial 
contributor to this negative trend is the constantly growing 
transportation sector. In addition, most urban regions suffer 
from traffic congestions which lead among others to local 
emissions, the loss of time and noise pollution. One promising 
approach to reduce the amount of transport related 
emissions is ride-sharing. The concept of ride-sharing, i.e. 
users share their ride when their trips match each other in 
time and place, is one approach to reduce the number of cars 
and thereby the negative transportation related effects. In 
addition, there are benefits for the individual user, as fuel, 
tolls and vehicle costs are shared. Previous studies, in which 
simulations based on real travel data are performed, have 
shown that by ridesharing, the number of cars and the 
kilometres travelled can be significantly reduced. Even if 
there are already several ride-sharing services on the market, 
ride-sharing is still no widely-accepted mean of 
transportation.   

Research to investigate user behaviour and acceptance of 
ride-sharing is still limited, especially testing the acceptance 
of  ride-sharing in real-life settings. Although ridesharing can 
provide a wealth of benefits, such as reduced travel costs, 
congestion, and pollution, a number of challenges have 

restricted its widespread adoption. In fact, even at a time 
when improved communication systems provide real-time 
detailed information that could be used to facilitate 
ridesharing, the share of work trips that use ridesharing has 
decreased by almost 10 percent in the past 30 years. Notable 
barriers include social discomfort and safety concerns when 
traveling with strangers. To overcome these barriers, in this 
paper, we propose a new type of Social-aware Ridesharing 
Group (SaRG) queries which retrieves a group of riders by 
taking into account their social connections and spatial 
proximities. Because static variety carpool still represents 
the majority of existing solutions, almost all of the available 
papers and literature on carpool and ride-sharing mainly 
tackle the static ridesharing issues, whereby users must pre-
schedule their trips, neglecting the dynamic aspects. Despite 
much of the progress experimented on dynamic carpooling 
and ridesharing concepts thanks to the current solutions, it 
still remains in the early stages regarding publicly available 
works and literature that deal with its real-time automation. 
In order to make up for that shortfall, some of the papers 
which mention carpooling and ride-sharing, and even some 
that did considered the dynamic aspect [8], in majority also 
considered other issues beside the static and dynamic 
carpooling and ride-sharing problems at the same time. 
Some papers are especially involved in the concepts of 
traceability, communication and security services, which 
their authors feel that none of the current solutions evoked, 
identifying the security issues as one of the main reasons 
hindering their success. 

Ride-sharing is an effective way to reduce the number of 
cars on the streets in order to address both individual and 
city-wide issues. On one hand, individuals are interested in 
reducing the cost of their car usage and save on gasoline and 
other usage-based costs [2]. On the other hand, cities are 
interested in reducing traffic and pollution and provide 
incentives to encourage commuters to share rides. As said, 
the expenses, both environmental and fiscal, of single 
occupancy vehicles could be reduced by utilizing the empty 
seats in personal transportation vehicles. Carpooling and 
ride-sharing target those empty seats: taking additional 
vehicles off the road reducing traffic and pollution, whilst 
providing opportunities for social interaction. However, 
historically carpool scheduling often limited users to 
consistent schedules and fixed rider groups–carpooling to 
the same place at the same time with a set person or a group 
of people. To make that problem worse, the leading problem 
concerns, given in a 2009 survey about why people don’t 
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carpool, were difficulty to organize carpools and 
inconvenience of organization [4]. We feel both of those can 
be addressed by employing some novel web technologies 
and modern day available data stores which hold social and 
location based individual user’s data. 

        Because static variety carpool still represents the 
majority of existing solutions, almost all of the available 
papers and literature on carpool and ride-sharing mainly 
tackle the static ridesharing issues, whereby users must pre-
schedule their trips, neglecting the dynamic aspects. Despite 
much of the progress experimented on dynamic carpooling 
and ridesharing concepts thanks to the current solutions, it 
still remains in the early stages regarding publicly available 
works and literature that deal with its real-time automation. 
In order to make up for that shortfall, some of the papers 
which mention carpooling and ride-sharing, and even some 
that did considered the dynamic aspect [13], in majority also 
considered other issues beside the static and dynamic 
carpooling and ride-sharing problems at the same time. 
Some papers are especially involved in the concepts of 
traceability, communication and security services, which 
their authors feel that none of the current solutions evoked, 
identifying the security issues as one of the main reasons 
hindering their success. 

       Social networks represent certain types of social 
interaction, such as acquaintance, friendship, or 
collaboration between people or groups of people that are 
referred to as actors [7]. In social networks, vertices (nodes, 
dots) usually stand for actors, and edges (arcs, links, lines) 
represent the pair wise relations or interactions between the 
actors. One of the central concepts in social network analysis 
is the notion of a cohesive subgroup, which is a tightly knit 
subgroup of actors in a social network. While the notion of a 
clique embodies a perfect cohesive group, in which every 
two entities are connected to each other, this definition is 
overly conservative in many practical scenarios. Indeed,(i) 
not need to require every possible link to exist between 
elements of a cohesive subgroup; (ii) the social network of 
interest may be built based on empirical data, which are 
prone to errors, so, even if a completely connected cohesive 
subgroup is sought for, it may be impossible to detect due to 
erroneous data [7]. To overcome this impracticality of the 
clique model, other graph-theoretic formalizations of the 
cohesive subgroup concept have been proposed in the 
literature.  

        This model aims to find a ridesharing group with a 
desired level of social acquaintance. To model such social 
acquaintance, we assume the existence of a social network 
graph in which users are connected if they have 
acquaintance relationships. Such a network might be derived 
from call graphs based on telephone call detail records 
(CDRs) or online social networks such as Facebook and 
Twitter. There are a number of social models that can be 
employed to measure the social cohesiveness of a 
ridesharing group, such as star (friend) (one central user has 

direct connections to all other users), star (friend of friend), 
and k-core. A k-core of a graph is a maximal connected 
subgraph in which every vertex is connected to at least k 
vertices in the subgraph. 

        Along with social acquaintance, trip matching of a 
ridesharing group must also be measured. The primary cost 
of a rider is the travel cost between the riders origin, 
destination and the drivers origin, destination. The returned 
ridesharing group should have the smallest travel cost 
because naturally only riders whose origin and destination 
are close to those of the driver are willing to join the drivers 
ridesharing. The minimum travel cost requirement and the 
social constraint are equally important in our problem [8]. 

        Many real-world graphs are highly dynamic. In social 
networks, users join/leave and connections are 
created/severed on a regular basis. In the web graph, new 
links are established and severed as a natural result of 
content update and creation. In customer call graphs, new 
edges are added as people extend their list of contacts. 
Furthermore, many applications require analyzing such 
graphs over a time window, as newly forming relationships 
may be more important than the old ones. For instance, in 
customer call graphs, the historic calls are not too relevant 
for churn detection. Looking at a time window naturally 
brings removals as key operations like insertions. This is 
because as edges slide out of the time window, they have to 
be removed from the graph of interest. In summary, dynamic 
graphs where edges are added and removed continuously 
are common in practice and represent an important use case. 

         Ridesharing group query processing is a very recent 
research topic. The existing studies on this topic fall into 
three categories: static ridesharing, dynamic ridesharing and 
trust-conscious ridesharing. 

Static Ridesharing : Most of the early studies considered 
static ridesharing, which refers to the scenario where the 
requests of drivers and riders are known in advance. We 
survey static ridesharing in the following categories: 
slugging, carpooling, and dial-a-ride. Slugging [4] is a typical 
form of ridesharing where passengers walk to the origin of 
the driver’s trip, board at the departure time, debark at the 
driver’s destination and then walk to their own destinations. 
Ma and Wolfson [9] studied slugging from a computational 
perspective using a graph abstraction. Carpooling is another 
representative application of ridesharing for daily 
commutes, where private car drivers declare their 
availability for pick-up and later bring back riders. The main 
issue in carpooling is the assignment of riders to drivers and 
the identification of each driver’s route to minimize the 
travel cost. For small-size carpooling, it can be solved by 
using linear programming techniques [6], [7]. To deal with 
the large-size problem, several heuristic algorithms have 
been proposed. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 06 Issue: 06 | June 2019                   www.irjet.net                                                                   p-ISSN: 2395-0072 

 

© 2019, IRJET       |       Impact Factor value: 7.211       |       ISO 9001:2008 Certified Journal       |     Page 3818 
 

Dynamic Ridesharing : Enabled by recent mobile 
technologies, dynamic ridesharing services have been 
gaining increasing attention. In dynamic ridesharing 
systems, riders and drivers continuously enter and leave the 
system; dynamic ridesharing algorithms match up them in 
real time or on a short notice. Existing works can be broadly 
classified into two categories:  centralized and distributed. 
Centralized real-time ridesharing relies on a central service 
provider to perform all operations for ridesharing. A recent 
survey on the optimization techniques for centralized 
dynamic ridesharing can be found in [2]. Various 
optimization objectives (e.g., minimizing system-wide 
vehicle miles or travel time) and spatial-temporal 
constraints (with desired departure/ arrival time or spatial 
proximity requirements) have been considered. Rigby et al. 
[6] proposed an opportunistic user interface to support 
centralized ridesharing planning while preserving location 
privacy. The latest work [11] modeled a centralized real-
time ridesharing problem with service guarantee, and 
several novel kinetic tree-based algorithms were proposed 
to better suit dynamic request scheduling and on-the-fly 
route adjustment. 

Trust-Conscious Ridesharing : A few recent existing works 
have been made to address the trust issue in ridesharing [1]. 
Suggested approaches include the adoption of reputation-
based systems and profile checking by linking with social 
networks like Facebook [1]. This approach entails significant 
involvement from participants. Cici et al. [8] suggested 
grouping participants who are friends or friends of friends in 
the assessment of the potential benefits of ridesharing. 
However, as indicated by our user study result, such simple 
social constraints would be either too restricted or too 
relaxed to be practical for real-life ridesharing systems. 

2. RELATED WORK 
 

2.1 En-Route Ride-Sharing 
 

Blerim Cici, Athina Markopoulou, Enrique Frias-
Martinez, Nikolaos Laoutaris[1], This assesses the 
potential of ride-sharing for reducing traffic in a city based 
on mobility data extracted from 3G Call Description 
Records(CDRs).CDRs are generated when a cellphone makes 
or receives a call or uses a service, e.g. SMS [9]. Information 
regarding the time/date and the location of the Base 
Transceiver Station (BTS), used for the communication, are 
then recorded. More specifically, the main fields of each CDR 
entry are the following: (1) the originating cellphone number 
(2) the destination cellphone number (3) a time-stamp (4) 
the duration of the call and (5) the BTS tower used by one, or 
both if applicable, cellphones 

       First, we infer home/work location of individual users, 
by adapting state-of-the-art techniques [5] to our CDRs and 
geotagged tweets. Also, we infer social ties among the users; 
we use phone calls in the CDR data and explicitly stated 
friendship in the Twitter data. These ties are later used for 

social filtering, to address concerns about riding with 
strangers. Second, given a set of users with known 
home/work locations, we develop a framework for matching 
users that could share a ride. Our goal is to minimize the 
total numbers of cars and provide rides to as many users as 
possible. We consider several constraints including: spatial 
(ridesharing with neighbors, i.e. someone within a certain 
distance from their home/work location), temporal (ride-
sharing within a time window from the desired 
departure/arrival time) and social (ride-sharing with friends 
or friend-or-friends) constraints. We also consider two 
versions of the problem:End-Points RS, ride-sharing 
between home and work locations, and En-Route RS, 
allowing the possibility to pick up passengers along this 
route. Third, we use our framework to assess the inherent 
potential of ride-sharing to exploit the overlap in people’s 
commute in a city. We find that there is significant potential 
for reducing traffic via ride–sharing, the exact magnitude of 
which depends on the constraints assumed for matching, as 
well as on the characteristics of the cities and the type of 
data set (CDR vs Twitter).  

          The recorded cell towers of a user are clustered to 
produce the list of places that the user visits. Then, 
regression analysis is applied to determine the features of 
the clusters that represent important places that the user 
visits. The used features are: (1) the number of days that the 
user appeared on the cluster; (2) the duration of user 
appearances on the cluster; and (3) the rank of the cluster 
based on number of days appeared. Once important 
locations have been inferred, and the algorithm chooses 
which of these are home and which are work locations. 
According to their results, the best features that characterize 
home and work are: (4) the number of phone calls between 
7PM - 7AM, i.e. Home Hour Events, and (5) number of phone 
calls between 1PM - 5PM, i.e. Work Hour Events. 

2.2 Simulation Algorithm 

         Masayo Ota, Huy Vo, Cl_audio Silva, Juliana Freire 
[2], STaRS supports the simulation of real-time ride sharing 
which serves unplanned trips. A wide deployment of ride 
sharing requires a better understanding of its tradeoffs. This 
is challenging since there are multiple stakeholders with 
different, and sometimes conflicting, interests. Governments 
want less traffic and pollution; taxi companies want to 
maximize their profits; and passengers would like to reach 
their destination quickly and cheaply. To design an effective 
policy, these interests need to be considered [12].  

The main components of simulation model are: 

Taxi Fleet: The taxi fleet refers to the set of taxis that are 
involved in the simulation. In contrast to previous works, 
where taxis are considered as homogeneous objects, to 
support a multi-vendor environment and different types of 
vehicles, we consider each taxi as a distinct object with its 
own specifications. 
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Passengers: We assume that passengers ride in groups of 
size greater than or equal to one. Each group is associated 
with a drop-off location and a set of ride-sharing constraints. 
Scheduler: For each pick-up request, the scheduler finds the 
most appropriate taxi based on pre-defined metrics. To do 
so, the scheduler must know all taxi locations along with 
their current states at all times.  

Road Network: The underlying road network of a city is 
represented as a directed graph. All taxis travel along this 
road network. Each directed edge represents a road 
segment, and each node represents the intersection of two or 
more roads. When a road allows traffic flow in both 
directions, there are two directed edges for that road. 

          In the taxi ride-sharing problem, the goal is to minimize 
the total cost or maximize the   total utility of sharing while 
meeting a set of constraints. A straightforward way to 
compute the additional cost is to explicitly find an optimal 
route for the cab that includes the pick-up and drop-off 
locations of rider and to compare its cost with the cost of the 
current route for the cab. However, computing the optimal 
path is known as the Sequential Ordering Problem (SOP) 
which is a version of the Traveling Salesman Problem and is 
NP-hard. 

2.3 Clique relaxation 

          Jeffrey Pattillo, Nataly Youssef, and Sergiy 
Butenko[3], Social networks represent certain types of 
social interaction, such as acquaintance, friendship, or 
collaboration between people or groups of people that are 
referred to as actors. In social networks, vertices usually 
stand for actors, and edges represent the pairwise relations 
or interactions between the actors. One of the central 
concepts in social network analysis is the notion of a 
cohesive subgroup , which is a tightly knit subgroup of actors 
in a social network. While the notion of a clique embodies a 
perfect cohesive group, in which every two entities are 
connected to each other. This definition is overly 
conservative in many practical scenarios[7]. 

         To overcome this impracticality of the clique model, 
other graph-theoretic formalizations of the cohesive 
subgroup concept have been proposed in the literature. Not 
surprisingly, all these alternative definitions can be viewed 
as clique generalizations, each of which relaxes one of the 
elementary clique properties, such as familiarity, 
reachability, or robustness. Hence, we use the term clique 
relaxations in reference to such models.  

Relaxation Models 

        We are considering a simple undirected graph, G=(V,E). 
A graph is said to be complete if there exists an edge 
between every pair of vertices in the graph. An induced 
subgraph is a subset of the vertices of a graph G together 
with any edges whose endpoints are both in this subset. A 
clique in a graph is an induced subgraph which is complete. 

2.3.1 Relaxation of Reachability 

        The length of the shortest path between any two vertices 
u,v in a graph is denoted by d(u,v).A k-clique S is the 
subgraph of a graph : for all vertices u,v in S, d(u,v)<=k. 

2.3.2 Relaxation of Familiarity 

          Relax the minimum number of neighbors or the 
maximum number of non-neighbors within the group. 
Familiarity is another important property one wants to have 
in a cohesive subgroup. Every member of the group should 
be familiar with every other member of the group. The k-
core concept imposes a lower bound on the minimum degree 
within the subgraph. Ensures that each vertex in the group is 
connected to at least k other vertices in the graph. A k-core S 
is a subgraph of a graph: for every vertices u,v in S, 
deg(v)>=k [14]. 

2.4 Demand Responsive Transit (DRT) 

           Kota Tsubouchi, Kazuo Hiekata, Hiroyuki 
Yamato[4], On-Demand Bus is a Demand Responsive 
Transit (DRT) service. It allows potential passengers to 
request service via the Internet or mobile phone. The 
requests compose of pick-up location, delivery location and 
desired delivery time (or pick-up time). The computer 
executes two main algorithms which are vehicle-choosing 
algorithm and routing algorithm. After calculation, the 
system will report to the customer whether the request is 
accepted or not. If it is accepted, the vehicle will pick up and 
deliver him to his destination within a guaranteed time. 

          In this problem, N customers have to be transported by 
maximum V vehicles. Each customer, customer n, has to 
specify pick-up bus stop, p(+n), and delivery bus stop, p(-n). 
He also has to specify either desired pick-up time or a 
desired delivery time. 

Vehicle Choosing Algorithm 

          We try to introduce an effective algorithm with less 
calculation time, especially when solving big problems. First, 
we define direction vector of customer n. On the other hand, 
we define bus direction vector. Then we define the direction 
decision variable which is the cosine of the angle between 
these two vectors. When a new reservation comes into the 
system, the vehicle-choosing algorithm will be executed for 
each available bus. Since the bus with the most cosine  value 
is the one with the closest direction to the new demand, that 
bus will be firstly selected to be executed by the next 
algorithm, routing algorithm. 

Routing Algorithm 

         For routing algorithm, we developed a heuristic 
algorithm. In this example, there are n-1 passengers who 
have already reserved the bus. Then there is a new 
reservation from customer n. We proposed the “Insertion 
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and time adjustment algorithm”, which will insert event 
p(+n) and p(-n) into the planned route. After insertion, some 
passengers’ pick up time or delivery time will be changed 
within their each time windows. 

2.5 T-Finder 

          Nicholas Jing Yuan, Yu Zheng, Liuhang Zhang, Xing 
Xie[5], Recommender system for both taxi drivers and the 
riders. Done by using the knowledge of passengers’ mobility 
patterns and drivers’ picking up/dropping off behaviours. 
First the recommender system provides the drivers with 
some locations and the routes to these locations . These are 
the locations towards which they are more likely to find 
passengers quickly. Second it recommends the people with 
some locations where they can easily find taxis. Taxis report 
their present location to a data center in a certain frequency. 
Besides geo-position and time, occupancy is also recorded. A 
large number of GPS trajectories are thus generated 
everyday. These trajectories include two aspects of 
knowledge: 

        Passengers’ mobility ie, when and where passengers get 
on and off a taxi. The other are taxis pick up/drop off 
behaviors. We consider three states for a working taxi: 
occupied (O), cruising (C) and parked (P) [7]. A taxi 
trajectory is a sequence of GPS points logged for a working 
taxi. Each point p has the fields: time stamp p.t, latitude p.lat, 
longitude p.lon, located road segment p.r, state p.s. A taxi trip 
is a sub-trajectory which has a single state, either cruising or 
occupied. We develop an approach to detect the parking 
places from GPS trajectories and segment the GPS 
trajectories. We first keep checking the distance between the 
current point and the latter point until the distance is 
smaller than a threshold. A large number of GPS trajectories 
are thus generated everyday which is difficult to handle. 
Passengers’ privacy and their social acquaintance is not 
concerned. It is based on trip matching and social 
acquaintance. 

3. PROPOSED FRAMEWORK 

         Ridesharing system consists of three parties: (i) riders 
(or passengers who want to participate in ridesharing), (ii) 
drivers (or private car owners who offer ridesharing), and 
(iii) ridesharing service provider (RSP) (the server in charge 
of the arrangement of ridesharing). The riders submit ride 
requests to the RSP, while the drivers send in ride offers.  

3.1 Problem Statement 
 
          Define an SaRG query over a set of riders D and a social 
network G=(V,E). Each rider v in D has a ridesharing trip 
request denoted by tpv = (o,d) where o and d represent the 
origin and destination of v’s trip, respectively. For the social 
network G, each vertex v in V is a user and each edge e in E 
denotes an acquainted relation between two users it 
connects. Each driver u’s ride offer forms an SaRG query qu . 

Once the RSP receives an SaRG query qu from a driver u, it 
will return u with the most suitable riders from D by 
considering trip matching and social acquaintance. 

3.2 System Architecture 
 

 
Fig -1: System Architecture 

          The riders submit ride requests to the RSP, while the 
drivers send in ride offers. In other words, a ride offer 
provided by a driver forms an SaRG query; the riders who 
submitted ride requests form the data space (or search 
space); the RSP arranges the best ride matches of 
ridesharing by jointly considering trip matching as well as 
social connections. In the ridesharing system, we adopt a 
simple yet popular form of ridesharing called Slugging. 
Slugging assumes that the driver’s trip is fixed and that the 
riders would walk to the origin location of the driver’s trip, 
board at the departure time, alight at the driver’s 
destination, and then walk to their own destinations. 

          We define an SaRG query over a set of riders D and a 
social network G=(V,E). Each rider v has a ridesharing trip 
request denoted by tpv=(o, d) where o and d represent the 
origin and destination of v’s trip, respectively. Each driver 
u’s ride offer forms an SaRG query qu. An SaRG query aims to 
find a ridesharing group with a desired level of social 
acquaintance. To model such social acquaintance, we assume 
the existence of a social network graph in which users are 
connected if they have acquaintance relationships. 

          Once there comes a ride offer from a driver, the RSP 
will match the most suitable riders to the driver. A 
ridesharing group is composed of a driver and the most 
suitable riders. For matching the suitable riders to a driver 
RSP uses a tree like structure which stores the social 
information of the users which is obtained from the social 
network site. In the social network site the relationships 
among users are stored in the form of a tree-like structure. 
To form a group of riders for particular driver, RSP first 
checks their spatial proximities and for checking their social 
connections RSP will perform Deapth First Traversal(DFS) 
up to a certain level o the tree ad fids the group of riders 
with a desired level of social acquaintance relationships.        
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          Slugging assumes that the driver’s trip is fixed. Riders 
would walk to the origin location of the drivers trip. Board at 
the departure time, alight at the driver’s destination, and 
then walk to their own destinations. An SaRG query aims to 
find a ridesharing group with a desired level of trip matching 
and social acquaintance. There are a number of social 
models that can be employed to measure the social 
acquaintance of a ridesharing group. 

Star (friend): one central user has direct connections to all 
other users. 

Star (friend of friend): one central user has direct or 
through-a-friend connections to all other users. 

k-core: A k-core S is a subgraph of a graph : for every 
vertices v in S, deg(v)>=k. 

           The primary cost of a rider in Slugging is the travel cost 
between the rider’s origin, destination and the driver’s 
origin, destination[12]. A ridesharing group consists of a 
driver u and a size-s set of riders. The size of a ridesharing 
group is s+1.The returned ridesharing group should have the 
smallest travel cost. The minimum travel cost requirement 
and the social constraint are equally important in our 
problem. This project  propose a dynamic and trust-
conscious ridesharing system where riders and drivers 
continuously enter and leave the system and are matched up 
in real time or on a short notice and which addresses the 
trust issue in ridesharing. 

          This system aims to find a ridesharing group with a 
desired level of social acquaintance. To model such social 
acquaintance, we assume the existence of a social network 
graph in which users are connected if they have 
acquaintance relationships (e.g., friends or colleagues). Such 
a network might be derived from call graphs based on 
telephone call detail records (CDRs) or online social 
networks such as Facebook and Twitter. There are a number 
of social models that can be employed to measure the social 
cohesiveness of a ridesharing group, such as star (friend) 
(one central user has direct connections to all other users), 
star (friend of friend) (one central user has direct or 
through-a-friend connections to all other users), and k-core 
(each user has direct connections with at least k other 
users). To explain the k-core concept of our system we have 
to first explain the concept of clique in a graph. A clique C is a 
subset of vertices in a graph G such that the subgraph G[C] 
induced by C on G is complete. A clique is called maximal if it 
is not contained in a larger clique, and it is called maximum if 
there is no larger clique in G. 

 

             This is the tree-like structure of the social relationship 
obtained from the social network site. Each node in the tree 
represents each friend of a particular user. If the user 
receives a new friend request and if he accepts the request, 
then a new node will be added to the tree dynamically 
indicating the new friend.  RSP performs Deapth First Search 
(DFS) traversal up to a certain level on the tree like structure 
and finds the most suitable set of riders for sharing the ride 
with a desired level of social acquaintance relationship. Level 
up to which the DFS has to be performed shows the 
importance that a user gives to the social concerns.  

We formulate a new type of Social-aware 
Ridesharing Group (SaRG) queries to accommodate the real-
world need of considering social comfort and trust in 
ridesharing. An SaRG query retrieves a ridesharing group 
where each riders trip is similar to that of the driver, and 
each member of the ridesharing group should be familiar 
with at least k other members.  

We propose an efficient algorithm and a set of 
efficient pruning techniques to answer SaRG queries. We 
also devise several incremental strategies by reducing 
repeated computations to speed up query processing. We 
also design a novel index structure, Social- Info R-tree (SIR-
tree), which integrates social information into R-tree, to 
further prune the search space and then propose the 
SIRBased algorithm that integrates the algorithm with the 
SIR-tree structure. We conduct extensive experiments to 
evaluate the query efficiency of our proposed algorithms. 
The consideration of social factors in ridesharing brings 
several new research challenges. First, how to capture and 
model social constraints for the purpose of ridesharing is a 
fundamental issue. Second, the social relationship may not 
be incremental in nature. As such, the social-aware 
ridesharing problem becomes more challenging. Indeed, as 
we shall prove later, the SaRG query problem in this paper is 
NP-hard, and therefore how to design an efficient algorithm 
to retrieve the optimal answer to an SaRG query is the focus 
of this paper. Our key insight is that in practical settings an 
SaRG query possesses some intrinsic properties. 
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4. EXPERIMENTAL RESULTS 

       We evaluate the query processing performance of 
three algorithms, which are Baseline, Incremental and SIR-
Tree, under different parameter settings. Following many 
other query processing performance evaluation methods, we 
report the overall query performance in terms of the average 
elapsed time. We can observe that both Incremental and 
SIRBased perform better than Baseline. Note that the y-axis 
is in log-scale. Under different values of s, SIRBased achieves 
the best performance. This conforms to our theoretical 
analysis: the SIR-tree structure can efficiently prune many 
irrelevant users who cannot satisfy either the social 
diameter or core number constraints as early as possible, 
leading to a much smaller search space. Even when s is small, 
SIRBased algorithm performs the best because a small group 
size leads to a small diameter which results in a good 
pruning ability of the SIR-tree.                                                        

We evaluate the query processing performance of 
these three algorithms under different parameter settings. 
Following many other query processing performance 
evaluation methods, we report the overall query 
performance in terms of the average elapsed time. 

 

Effect of the number of riders. In this set of experiments, 
we show the performance of the algorithms under various 
numbers of riders (i.e., the size of the rider space) in Figure 
above. We randomly extract several subsets of the rider 
space to evaluate the algorithms’ performance. As expected, 
the result demonstrates that SIRBased achieves the best 
query efficiency in all cases. Compared to Incremental and 
SIRBased, Baseline is more sensitive to the number of riders. 
Its query processing time increases rapidly with the increase 
of the number of riders. 

5. CONCLUSION 
 
          Introduced a new practical type of SaRG queries that 
solves the ridesharing problem with flexible social 
constraints. An SaRG query aims to find a group of riders in 
which each rider’s ridesharing trip is close to that of the 
query issuer and each member in this group is familiar with 
at least k other members. We have proposed a series of 
efficient algorithms to tackle SaRG queries. An extensive 

empirical study on real datasets demonstrates that the 
proposed techniques achieve desirable query performance. 

 
Future Enhancement: 

           First extension is to investigate weighted relations in 
our social-aware ridesharing group queries. Second, we 
plan to design more personalized ride requests in our 
ridesharing system to make our proposed SaRG queries 
more practical. Third, in some cases, we do not need an 
exact solution. How to design an efficient approximation 
algorithm with a tight approximation bound is also our 
future work. 
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