Utilization of Ceramic Waste in Grout

Prof. Supriya Shinde¹, Sainath Naikwadi², Nitesh Shevde³, Farman Ansari⁴

¹Assistant Professor, APCOER, SPPU, Pune
², ³, ⁴Graduate student, APCOER, SPPU, Pune, Department of Civil Engineering, APCOER, SPPU, Pune, India

Abstract - Repair and reinforcing of existing stone work structures by injection grouting is a practical intends to give functional, sturdy, and safe structures without physically modifying outside aesthetics. A trial and analytical program examining the effect of grout injection on the basic conduct of old, unreinforced stone work is currently in progress. A few distinct definitions of cementitious grouts were observed to be helpful for injection of old brick work. These grouts are utilized for injection into cracks in harmed brick work to reestablish basic capacity and can likewise be utilized to fill existing voids to reinforce lacking stone work. A method for infusion of grouting of stone work is described, including specific portrayals of divider arrangement, infusion port area, grout mixing, and the infusion procedure.

Key Words: grout, injection grout, w/c ratio, compressive strength, tensile strength, etc

1. INTRODUCTION

Grout is a particularly fluid form of concrete used to fill gaps. Grout is generally a mixture of water, cement, and sand, and is employed in pressure. grouting embedding rebar in masonry walls, connecting sections of pre-cast concrete, filling voids, and sealing joints such as those between tiles.

2. TYPES OF GROUTING:

Grouts are classified into different types. They are listed below. Cement-based, furan resin and epoxy grouts are most popular and widely used grouts.

2.1 Cement-Based Grouts: Cement based grouts can be found in both sanded and unsanded form. This type of grout is easy to work and clean. The cement-based grouts are used in making craft projects.

2.2 Furan Resin Grouts: Furan resin grouts are found in sanded and unsounded varieties too. The name furan came from the ingredient furfural alcohol which is used in this grout.

2.3 Epoxy Grouts: Epoxy grouts are made up of a resin and a hardener. It is resistant to most chemicals and stains. Among all the grouts, epoxy grout is more expensive and water resistant.

3. Types of cracks

3.1. Depend on broad classification

Depend upon this criterion cracks are classified in to following type

a) Structural cracks:

These are more harmful cracks. These are mostly formed because of the excess loading and due to improper designing of the building.

b) Nonstructural cracks:

Nonstructural cracks are mostly due to internally induced stresses in building material and these generally do not directly result in structural weakening.

4. METHODOLOGY

- Selection & Design of grouting Material
 Study is based on utilization of ceramic wastes. Then we find the material which are waste from various industries like marble industry, granite industry, crush sand etc. from that we took material Granite Dust, Marble Dust, Crushing Sand

Fig.No.1
Selection of Sieve Size:
For the selection preparation of materials the sieve size is important factor for strength of grout material. For selection of sieve size for project the following test sample are carried out.

A) Sample test No. 1

Table No.1: Material Proportion For Sample Test 1

<table>
<thead>
<tr>
<th>Sieve size</th>
<th>Material</th>
<th>Weight [gm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 micro.</td>
<td>Marble dust</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Granite dust</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Crushed sand</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Cement</td>
<td>500</td>
</tr>
</tbody>
</table>

Conclusion: From this test following conclusion are made by observation
1. Flowability was not good
2. Small crack are developed after grouting.

B) Test sample No. 2

Table No. 1: Material Proportion For Sample Test 2

<table>
<thead>
<tr>
<th>Sieve size</th>
<th>Material</th>
<th>Weight [gm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 micro.</td>
<td>Marble dust</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Granite dust</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Crushed sand</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Cement</td>
<td>500</td>
</tr>
</tbody>
</table>

Conclusion: From this test following conclusion are made by observation
1) Good flowability.
2) Pores are not seen after grouting so its good for filler.
3) No permeability after grouting.

Selection of Water Ratio:
In our project we decided water ratio by trial and error. For that we studied different water ratios for each material. Different water ratios as per follows

1) 0.40 % by weight of material – mixture not mixed properly.
2) 0.45 % by weight of material –
 1. shows good flowability
 2. mixing properly done

Casting of blocks
The size of cubes used for this investigation was 150 x 150x 150 mm.

Concrete cylinders of size 100 mm dia and 200mm using sand.
Laboratory tests

1. Compressive strength

Fig. No. 5

Compressive Strength For Mix Proportion

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Size(mm)</th>
<th>Weight(g m)</th>
<th>Load(KN)</th>
<th>Avg strength (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150 x 150 x 150</td>
<td>1493.9</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>150 x 150 x 150</td>
<td>1477.9</td>
<td>167</td>
<td>11.37</td>
</tr>
<tr>
<td>3</td>
<td>150 x 150 x 150</td>
<td>1489.4</td>
<td>174</td>
<td></td>
</tr>
</tbody>
</table>

2. Tensile strength

Fig. No. 6

Table No.10: Split Tensile Test For Mix Proportion

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Size (mm)</th>
<th>Weight (kg)</th>
<th>Load (KN)</th>
<th>strength (N/mm²)</th>
<th>Avg. strength (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D=100 i)13 ii)12.8</td>
<td>i) 72 ii)73.7</td>
<td>i)2.29 ii)2.34</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D=100 i)13.3 ii)13.8</td>
<td>i)78 ii)82</td>
<td>i)2.48 ii)2.61</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D=100 i)13.7 ii)13.4</td>
<td>i)112 ii)118</td>
<td>i)3.56 ii)3.75</td>
<td>3.65</td>
<td></td>
</tr>
</tbody>
</table>

5. Result:

Mixing of material- 45% of marble dust
45% granite dust
10% crushed sand
6. CONCLUSION:

- As per study the rate of grouting in market is about 300 to 350 RS per hole. We reduces the cost of grout upto 105 RS per hole. Which is 70% to 75% less than market cost.
- Strength of prepared Grout mixture is equivalent to market grout material.

REFERENCES

1. AARSLEFF, Grouting-The History(30th MARCH 2019)
2. Buddhima Indraratna " Grout Improvement /Grouting/Dredging " by University of wollongong Australia
3. Dr. A.V.Sharoff "Development in Design & Execution in Grouting Practice " M.S. University Baroda
4. Fonseca; Fernando S. & Siggard, Kurt" Replacement of portland cement with supplemental cementitious materials in masonry grout"by Brigham Young University in 2012
5. Indrel Akyol; Hasan Kaplan; Y.Selim Tama" Sealing Foundations of Exisiting Buildings by Grouting"Vol.10
6. Lidia Radu; Nastasia Saca; Claudia Mazilu; Maria Gheorghe; Ionela Petre "Practical Model of Cement Based Grout Mix Design ,for Use into Low Level Radiation Waste Management" by Mathematical Modelling in Civil Engineering .Vol. 11
10. Santosh Kumar. T.G; Benny Mathews Abraham; A.Sridharian & Babu. T. Jose, "Bearing capacity improvement of loose sandy foundations soil through grouting ,University of science & technology,Cochin-682022