WIRELESS POWER TRANSFER SYSTEM USING PULSE DENSITY MODULATION BASED FULL BRIDGE CONVERTER

HEMA SANKARI K¹, YASODA K²

¹ ME – Power Electronics And Drives, Department of Electrical and Electronics, Government College of Technology, Coimbatore, Tamil Nadu, India
² Assistant Professor, Department of Electrical and Electronics, Government College of Technology, Coimbatore, Tamil Nadu, India

Abstract - The pulse density modulation (PDM) based zero-voltage switching (ZVS)-full bridge converter is proposed for wireless power transfer (WPT) systems. The converter has the advantages of both direct conversion ratio control and load independent soft switching. These advantages reduce the overall system complexity and power loss. However, the converter suffers from the limitations of large low frequency subharmonics, a narrowed modulation and a large modulation delay. These limitations are caused by the existing PDM strategy, which was designed to generate a symmetric ZVS current to reduce the switching losses. The main objective of the proposed PDM strategy is to reduce the dead time voltage with an ideal ZVS current and also to overcome the aforementioned limitations. The converter employs a ZVS branch between switching nodes to provide a ZVS current and specially designed modulator to obtain the current. The performances and response of the converter are compared with the existing PDM strategy and the results shows that the proposed PDM strategy achieved lower subharmonics, wider modulation range and faster response.

Key Words: Dead-time, pulse-density-modulation (PDM), wireless power transfer (WPT), zero-voltage-switching (ZVS).

1.INTRODUCTION

Near-Field magnetic coupling-based wireless power transfer (WPT) is a promising technology for fully automated electric vehicles, industrial robots, and consumer electronics [1-10]. In these applications, WPT systems must cope with various coupling and load conditions, and therefore, necessitate output regulation and efficiency maximization capabilities [11-17]. These capabilities rely on flexible and efficient power conversion techniques. The recently proposed pulse-density-modulation (PDM) zero-voltage-switching (ZVS) full-bridge converter [18] is well suited to meet the requirements of WPT systems as the converter can directly control the conversion ratio while achieving soft switching regardless of the coupling and load conditions.

The circuit diagram and ideal operating waveforms of the PDM ZVS full-bridge converter described in [18] are shown in Fig. 1 and Fig. 2, respectively. The pulse density d of the switch-node voltage u_AB is modulated to control the equivalent conversion ratio when driving a resonant load. A ZVS branch that consists of a ZVS inductor L_ZVS and a dc blocking capacitor C_b is connected between the switch nodes A and B to provide a ZVS current i_ZVS that charges/discharges the switch output capacitances C_OSS-1-4 in dead-time transients to achieve soft switching. The equivalent series resistance (ESR) of the ZVS branch is denoted by R_ZVS.

The waveforms shown in Fig. 2 were derived from the existing PDM strategy [18], whose block diagram is shown in Fig. 3. The strategy was elaborately designed to generate a symmetric i_ZVS to ensure the ideal ZVS for minimizing the switching loss. However, the converter with the existing PDM strategy suffers from the limitations of 1) large low-frequency subharmonics on u_AB, 2) a narrowed modulation range, and 3) a large modulation delay. The large low-frequency subharmonics are created by the nested frequency modulator “FM” and lead to large ripples on the converter input and output power. The modulation range is narrowed by the lower limit on the pulse density d. The limit is to prevent “FM” from falling into a too long modulation period but it reduces the range of conversion ratio. The large modulation delay is introduced by the small accumulation coefficient k_e that ensures the stability of the delta-sigma loop.

This paper finds that even with an asymmetric i_ZVS, the ideal ZVS can still be ensured if C_b is removed, waveforms shown in Fig. 4, where the asymmetric i_ZVS has a non-zero
The mechanism is explained in Section II by the topology and principle and Section III by the negative feedback effect of the dead-time voltage. By using this effect, Section IV proposes a simplified PDM strategy that allows asymmetric \(i_{ZVS} \) and overcomes the limitations of the existing PDM strategy. A WPT system are given in Section V and Section VI shows the simulation result, respectively. Section VI concludes the paper.

2. TOPOLOGY AND PRINCIPLE

Fig. 1 shows the schematic of the main circuit of the proposed PDM ZVS full-bridge converter that operates in inversion mode. The converter is fed by a dc input voltage of magnitude \(V_{in} \) and drives a series resonant tank, which has inductance \(L \), capacitance \(C \), and resistance \(R \). The converter is comprised of a conventional full bridge with switches S1-4 and a ZVS branch that consists of a ZVS inductor \(L_{ZVS} \) and a dc blocking capacitor \(C_b \). The ZVS branch is connected between the two switching nodes A and B of the two half bridges.

Fig. 2 shows the ideal waveforms when the pulse density \(d \) of \(u_{AB} \) equals 0.5. As compared with conventional full-bridge converters, some pulses of \(u_{AB} \) are removed and the blanks are denoted by "0". The ratio of the number of remaining positive (P) and negative (N) pulses to the total number of P, N and "0" is called pulse density \(d \).

If the switching frequency \(f_s \) of the pulses equals the resonant frequency \(f_r \) i.e.

\[
f_s = f_r = \frac{1}{2\pi\sqrt{L/C}}
\]

The resonant current \(i_c \) will be in phase with \(u_{AB} \) as shown in Fig. 2. As per the "magnitude-density-balance" principle [5], the root-mean-square (RMS) value of the fundamental component of \(u_{AB} \) at \(f_s \) is

\[
U_{AB} = \frac{2\sqrt{2}}{\pi} V_{in} d
\]

Therefore, \(d \) is the control degree of freedom of the converter. If \(C_b \) is large enough, such that

\[
\frac{1}{2\pi\sqrt{L_{ZVS}C_b}} \ll f_s
\]

The absolute peak value of \(i_{ZVS} \) is

\[
|i_{ZVS, pk}| = \frac{V_{in}}{4f_s L_{ZVS}}
\]

To fully discharge the switch output capacitance during dead time \(T_d \), \(|i_{ZVS, pk}| \) must be large enough and the range of \(L_{ZVS} \) is given by

\[
L_{ZVS} \leq \frac{T_d}{8f_s^2 C_{OSSQ}}
\]

where \(C_{OSSQ} \) is the charge equivalent switch output capacitance.

2. NEGATIVE FEEDBACK EFFECT OF DEAD-TIME VOLTAGE

2.1 Dead-time Transients and Switching Modes

As shown in Fig. 2 and Fig. 4, a PDM ZVS full-bridge converter may have six types of dead-time transients when \(u_{AB} \) changes between the positive (P), negative (N), and zero (0) states. In Fig. 5, the six types of transients are denoted by 1) N-to-0, 2) 0-to-P, 3) N-to-P, 4) P-to-0, 5) 0-to-N, and 6) P-to-N, respectively, and classified into two groups, i.e. the rising transients and the falling transients. Within the transients, the load current \(i_L \) is neglected because it crosses zero when the load is tuned at resonance, and \(i_{ZVS} \) is treated as constant because the dead-time period \(T_{dead} \) is much shorter than the pulse width of \(u_{AB} \). The values of \(i_{ZVS} \) in the three types of rising transients are assumed to be identical and equal the minimum value \(i_{ZVS, min} \). Similarly, the values of \(i_{ZVS} \) in the falling transients are assumed to equal the maximum value \(i_{ZVS, max} \).

The boundary current values are \(i_{optimal} \), \(-i_{optimal} \), and 0, where \(i_{optimal} \) is the optimal current for ideal ZVS, i.e. the minimum current that can fully charge/dischage the switch output capacitances in a dead time period:

\[
i_{optimal} \leq \frac{2C_{OSSQ}}{T_{dead}}\frac{d}{T_{dead}}
\]

\(C_{OSSQ} \) is the charge equivalent switch output capacitance, which is a function of the converter dc side voltage \(V_{dc} \).

2.2 Dead-Time Voltage

The integrals of \(u_{AB} \) during dead-time transients are functions of \(i_{ZVS, min} \) and \(i_{ZVS, max} \) and can be expressed as the midrange ZVS current \(i_{ZVS, mid} \) and the peak-to-peak ZVS current \(\Delta i_{ZVS} \) as
\[i_{ZVS_{min}} = i_{ZVS_{mid}} - \frac{\Delta i_{ZVS}}{2} \]
\[i_{ZVS_{min}} = i_{ZVS_{mid}} + \frac{\Delta i_{ZVS}}{2} \]
\[\Delta ZVS \] is determined by the relationship of
\[L_{ZVS} \Delta i_{ZVS} = \frac{V_{dc} T_s}{2} \]
where \(T_s \) is the fundamental switching period, i.e. the switching period when \(d = 1 \). When the ZVS inductance is optimized as
\[L_{ZVS} = \frac{T_{dead} T_z}{8C_{OSSQ}} \]
\[(8) \]
\[(9) \]
\[(10) \]

2.2 The Negative Feedback Effect

Since the densities of the positive and negative pulses in \(u_{AB} \) are equal, the average of \(u_{AB} \) depends only on \(u_{AB_T_dead_avg} \):
\[u_{AB_avg} = \frac{T_{dead}}{T_s} u_{AB_T_dead_avg} \]
\[(11) \]

3. PROPOSED PDM STRATEGY

3.1 Operating Principle

Utilizing the negative feedback effect of the dead-time voltage, a simplified PDM strategy that allows asymmetric ZVS currents is proposed for the ZVS full-bridge converters without dc blocking capacitors. The block diagram of the strategy is shown in Fig. 3.

The input signals include a continuous pulse \(c \) and a specified pulse density \(d \). The frequency of \(c \) equals the fundamental switching frequency \(f_s = 1/T_s \). The range of \(d \) is \([0, 1]\). The output signals are \(u_A^* \) and \(u_B^* \), which are the references for the switch nodes A and B, respectively. The strategy uses an adder, a comparator, five logic gates, and three delay units. The delay units are triggered by the rising and falling edges of \(c \). Therefore, the iteration frequency of the strategy is \(2f_s \). In each iteration, the difference between \(d \) and \(u_A^* _X_O_R _u_B^* \) is accumulated and the result is denoted by \(e \). If \(e > 0 \), \(u_A^* \) equals \(c \), otherwise equals the previous \(u_A^* \). \(u_B^* \) always equals the previous \(u_A^* \).

Fig -3: Block diagram of the proposed PDM strategy

4. THE WPT SYSTEM

Fig. 4 shows a WPT system that employs PDM ZVS fullbridge converters on both transmitting and receiving sides as inverter and rectifier, respectively. The inverter converts the input dc voltage \(v_i \) into its switching node voltage \(u_1 \) and injects energy into the transmitting side resonator, which has inductance \(L_1 \), capacitance \(C_1 \), and equivalent series resistance (ESR) \(R_1 \). The resonant current on the transmitting side is denoted by \(i_{L1} \). Symmetrically, the rectifier converts the output dc voltage \(v_o \) into its switching node voltage \(u_2 \) and absorbs energy from the receiving side resonator, which has inductance \(L_2 \), capacitance \(C_2 \), and ESR \(R_2 \). The resonant current on the receiving side is denoted by \(i_{L2} \). In addition, the mutual inductance between \(L_1 \) and \(L_2 \) is \(M \), the filter capacitance is \(C_f \) and the load resistance is \(R_L \).

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>QUANTITY</th>
<th>SYMBOL</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Converter dc side voltage</td>
<td>(V_{dc})</td>
<td>40V</td>
</tr>
<tr>
<td>2.</td>
<td>Dead time period</td>
<td>(T_{dead})</td>
<td>50ns</td>
</tr>
<tr>
<td>3.</td>
<td>Charge equivalent switch output capacitance</td>
<td>(C_{OSSQ})</td>
<td>600pF</td>
</tr>
<tr>
<td>4.</td>
<td>Optimal current for ideal ZVS</td>
<td>(i_{optimal})</td>
<td>1A</td>
</tr>
<tr>
<td>5.</td>
<td>Fundamental switching period</td>
<td>(T_z)</td>
<td>1(\mu)s</td>
</tr>
<tr>
<td>6.</td>
<td>Fundamental switching frequency</td>
<td>(f_s)</td>
<td>1MHz</td>
</tr>
<tr>
<td>7.</td>
<td>ZVS inductance</td>
<td>(L_{ZVS})</td>
<td>10(\mu)H</td>
</tr>
<tr>
<td>8.</td>
<td>Peak-to-peak ZVS current</td>
<td>(\Delta i_{ZVS})</td>
<td>2A</td>
</tr>
<tr>
<td>9.</td>
<td>ZVS branch resistance</td>
<td>(R_{ZVS})</td>
<td>0.1(\Omega)</td>
</tr>
</tbody>
</table>
The transmitting side modulator modulates \(u_1 \) using an independent clock signal and a specified pulse density \(d_1 \). The RMS value of the fundamental component of \(u_1 \) is:

\[
U_1 = \frac{2\sqrt{2}}{\pi} v_1 d_1
\]

The receiving side modulator modulates \(u_2 \) using the pulses synchronized with \(iL_2 \) and a specified pulse density \(d_2 \). The RMS value of the fundamental component of \(u_2 \) is:

\[
U_2 = \frac{2\sqrt{2}}{\pi} v_2 d_2
\]

6. SIMULATION RESULTS

6.1 Steady-State Performances

The steady-state performances of the converter were tested to confirm the ZVS operation and investigate the subharmonics of \(u_{AB} \). The measured power losses of the converter with different \(d \) were about 0.2 W, which were much lower than the calculated hard switching power losses, indicating that the ZVS was achieved by both the two PDM strategies. The measured waveforms when \(d = 0.5 \) compared the subharmonics of \(|u_{AB}| \) with normalized units.

Table 2: PARAMETERS OF THE WPT

<table>
<thead>
<tr>
<th>SL.NO</th>
<th>SYMBOL</th>
<th>QUANTITY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(L_{1,2})</td>
<td>Resonant inductances</td>
<td>75.3 (\mu)H</td>
</tr>
<tr>
<td>2.</td>
<td>(C_{1,2})</td>
<td>Resonant capacitances</td>
<td>400 pF</td>
</tr>
<tr>
<td>3.</td>
<td>(f_{r_{1,2}})</td>
<td>Resonant frequencies</td>
<td>0.917 MHz</td>
</tr>
<tr>
<td>4.</td>
<td>(f_s)</td>
<td>Fundamental switching frequency</td>
<td>0.917 MHz</td>
</tr>
</tbody>
</table>

\(|u_{AB}| \) is of interest because the positive and negative pulses of \(u_{AB} \) are equally effective when driving a resonant load. The dc component of \(|u_{AB}| \) equaled the specified \(d \) for both the two PDM strategies, while the low-frequency
subharmonic at 0.25fs was eliminated by the proposed one. As the remaining subharmonics were concentrated closer to fs, the power flow can be controlled more smoothly and the electromagnetic interferences can be suppressed more easily. Similar results were also obtained with different d.

Fig.5. Proposed pdm strategy

6.2 Sinusoidal Responses

The sinusoidal responses of the converter were tested to investigate the range of the achievable d. The measured responses when the specified $d = 0.5 + 0.5 \sin(4000 \pi t)$, i.e. a biased 2 kHz sine wave with a maximum of 1 and a minimum of 0. The existing PDM strategy needed an appropriate lower limit on d to ensure the stability and continuous operation, while the proposed one could accurately follow the specified d, covering the full range of [0, 1].

Fig.6. Pulse density values of $D1=0.89, D2=0.90$

6.3 Step Responses

The step responses of the converter were tested to investigate the modulation delay. The measured responses when the specified d steps between 0.2 (the lower limit of the existing PDM strategy) and 1. With the existing PDM strategy, the modulation delays were about 4 μs (4Ts) and 10 μs (10Ts) for the step up and down, respectively, depending on the accumulation coefficient k_e. In contrast, u_{AB} responded to the changes of d immediately when using the proposed PDM strategy. The fast response can simplify the system level dynamical analysis and control [20-22] as the modulation can be treated as ideal.

Fig.7. Pulse density values of $D1=0.705, D2=0.65$

Fig.8. Output voltage
Table -3: REPORTED WPT SYSTEMS WITH MEPT

<table>
<thead>
<tr>
<th>INPUT VOLTAGE</th>
<th>D1</th>
<th>D2</th>
<th>OUTPUT DC VOLTAGE</th>
<th>INPUT DC POWER</th>
<th>OUTPUT DC POWER</th>
<th>EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>40V</td>
<td>0.70</td>
<td>0.6</td>
<td>40V</td>
<td>39.1 W</td>
<td>31.50 W</td>
<td>80%</td>
</tr>
<tr>
<td>40V</td>
<td>0.46</td>
<td>0.5</td>
<td>40V</td>
<td>19.6 W</td>
<td>16.0 W</td>
<td>82%</td>
</tr>
<tr>
<td>40V</td>
<td>0.89</td>
<td>0.9</td>
<td>40V</td>
<td>17.5 W</td>
<td>15.3 W</td>
<td>88%</td>
</tr>
</tbody>
</table>

3. CONCLUSIONS

In a ZVS full-bridge converter, the switch-node voltage in dead-time transients depends on the ZVS current. The average switch-node voltage in multiple dead-time transients can provide a strong negative feedback effect that pushes the midrange ZVS current toward zero regardless of its average value so that the ideal ZVS can be ensured even with an asymmetric ZVS current. This effect is utilized by the proposed PDM strategy to overcome the limitations of the existing PDM strategy for ZVS full-bridge converters. As compared with the existing one, the proposed PDM strategy exhibits lower low frequency subharmonics, wider modulation range, and faster response. With these advantages, PDM ZVS full-bridge converters can be one of the ideal choices for WPT systems.

REFERENCES