
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 6304

Performance Analysis of RSA Algorithm with CUDA Parallel Computing

Rishikesh Kadam1, Vishakha Vidhani2

1,2 Student, Department Of Computer Engineering, V.E.S.I.T., Mumbai University, India.
---***---
Abstract - In today’s data driven and digitally connected
world, computer system security is of paramount
importance. The computer security relies on cryptographic
security techniques for protection of data. RSA is one of the
most used cryptographic algorithms which can be sped up
using parallel computing techniques. The advances in
computing capability of Graphics Processing Unit as a co-
processor of the system CPU allows parallelization of RSA
encryption and decryption. This paper focuses on parallel
implementation of RSA using Nvidia’s Compute Unified
Device Architecture (CUDA). First, the RSA cryptographic
algorithm is studied. Then, it is designed for implementation
in CUDA framework. In the last step, the RSA function is
called parallely by all nodes in a Hadoop cluster. For this
step, JCUDA is used. The results are analyzed mainly for the
speed up introduced by GPU as compared to the CPU-only
implementation.

Key Words: Cryptography, RSA, CUDA, GPU, Hadoop.

1. INTRODUCTION

RSA algorithm is named after its inventors Ron Rivest, Adi
Shamir and Leonard Adleman. It is a public key
cryptographic algorithm whose security relies on the
difficulty of finding prime factors of large numbers.[1] But
the modular power used in this algorithm acts as a
bottleneck for its performance which makes its large scale
implementations inefficient. Thus, the optimization of RSA
has been a research focus. The advancements in multi-
core processing and parallel computing is huge boost for
RSA optimization.

In last decade, the use of Graphical Processing Unit in
training of machine learning models and neural networks
has been a major trend, but along with that, GPU turns out
to be exclusively beneficial for general purpose parallel
computing [2] after the advent of Compute Unified Device
Architecture (CUDA) technology. Nvidia’s CUDA platform
makes thousands of stream processors available to
provide parallel speed up. This paper explores the
implementation of CUDA for parallelization of RSA
algorithm and presents the performance analysis. First,
the RSA algorithm is encapsulated in Java Native Interface
(JNI). Then, JCUDA is used to implement the
parallelization.

In section 2 of the paper, traditional principle of RSA
algorithm is studied. Section 3 gives an architectural

overview of the system hardware used for the
implementation. Section 4 presents the design and
implementation of RSA parallelization and section 5 shows
the results of performance analysis.

2. RSA ALGORITHM

RSA algorithm is the most commonly used asymmetric
cryptography algorithm. It works on two different keys i.e.
public key and private key. The public key is known to
everyone and is used for encrypting messages. Encrypted
Messages can only be decrypted using the private key.

The keys for the RSA algorithm are generated in the
following way:

1. Choose two distinct large prime numbers, p and q.
2. Calculate n = pq, n is used as the modulus for both the
public and private keys.
3. Compute φ(pq) = (p − 1)(q − 1). (φ is totient function).
4. Pick an integer e such that 1 < e < φ(pq), and e and
φ(pq) are coprime (e and φ(pq) share no divisors other
than 1). The public key consists of e (often called public
exponent) and the modulus n.
5. Find d which satisfies the relation d*e = 1(mod φ(pq)).
The private key consists of d (private exponent) and the
modulus n.

The message M is encrypted using formula C ≡ Me mod n,
where C is the encrypted message. And it is decrypted
using the formula M ≡ Cd mod n.

Example :

1. The plaintext M to be encrypted: 1314
2. Let p=397 and q=401
3. n= pq = 159,197
4. φ(pq) = 396 * 400 = 158,400
5. The public key(e,n) is (343, 159197) and private key d
is 12,007 (d*e = 1 mod φ(pq))
6. C ≡ Me mod n, C ≡ 1314343 (mod 159,197) = 33,677
7. M ≡ Cd mod n, M ≡ 33,67712,007 (mod 159,197) = 1314

3. CUDA ARCHITECTURE

NVIDIA has designed a special C-based language CUDA to
utilize the massively parallel nature of GPU.[3] Parallel
execution is expressed by the kernel function that is
executed on a set of threads in parallel on GPU; GPU is also

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 6305

called the device. This kernel code is a C code for only one
thread. The number of thread blocks, and the number of
threads within those blocks that execute this kernel in
parallel are given explicitly when this function is called.

NVIDIA’s CUDA architecture includes a number of
multiprocessors, each multiprocessor consists of:

● 8 scalar processor cores
● 2 special function units for transcendentals
● 1 multithreaded instruction unit
● On-chip shared memory

Fig -1: CUDA Hardware

Each multiprocessor has SIMD architecture (single
instruction multiple data). Each processor of the
multiprocessor executes a different thread but all the
threads run the same instruction but operate on different
data.

Several threads (up to 512) may execute concurrently
within a multiprocessor and communicate through a small
shared memory bank (16KB) which can be seen in Fig -1.
Shared memory is local to each multiprocessor unlike
device memory and allows local synchronization to be
more efficient. It is divided into many parts. Each thread
block within multiprocessor accesses its own part of
shared memory. This part of shared memory is not
accessible by any other thread block of this multiprocessor
or of some other multiprocessor.

4. PARALLELIZATION

This paper presents a two-level parallelization of RSA
algorithm, node level and thread level as shown in Fig -2.

Fig -2: Two Level Parallelization

CUDA framework is used for parallel implementation on
thread level. RSA algorithm makes packets with the same
length by dividing the plaintext or ciphertext. The same
function will be executed for all the packets. As mentioned
in Section 2, the text is considered as integers. All the
packets are considered as arrays with same number of
integer elements. The encryption and decryption
processes are carried out on these packets. We can get the
thread and block index and then, they are used to assign
packets (elements) to each thread. Thus, on thread level,
CUDA multi-thread programming improves the
performance of RSA algorithm. [4]

The large size of plaintext or ciphertext can be
troublesome to handle on a single computer. We used a
distributed file system to store the text to be processed.
Each node (computer) in the cluster executes the parallel
RSA algorithm function. This is node level or computer
level parallelization. In such clusters, each node gets a
small part of data. In this case, a part of text is processed
by each node. Then, each node performs thread level
multi-processing.

This paper uses Hadoop Distributed File System (HDFS)
[5] for distribution of the text to all the nodes in the
cluster. HDFS is block-structured file system where each
file is divided into multiple blocks. The blocks are stored

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 6306

across the cluster of nodes. It is a Java based software
framework. Google’s MapReduce [6] and Google File
System (GFS) [7] papers built the foundation for HDFS. As
Hadoop is based on pure Java, we need to find a method to
implement our C language code of RSA on Hadoop. JCUDA
[7] provides an interface for invoking CUDA kernels using
Java code or framework such as Hadoop. The syntax and
usage of JCUDA are beyond the scope of this paper. A
sample of kernel code is as follows:

__global__ static void RSACUDA(int* arr)
{
 long p,q,e,d,m,n,t,c,i;
 int x = blockDimension.x * blockId.x + threadId.x;
 p=191;
 q=223;
 n=p*q;
 t=(p-1)*(q-1);
 e=t-1;
 d=1;
 while(((e*d)%t)!=1)
 d++;
 for(i=0;i<50;i++)
 {
 c = encrypt(*(arr+i+x*50),e,n);
 m = decrypt(c,d,n);
 *(arr+i+x*50) = m;
 }
}

In next section, performance of parallel implementation is
discussed.

5. VERIFICATION

For verification, we divide the tests into two parts. First,
we run the RSA program using a CPU-only processing.
Then, in the next step, we implement the RSA algorithm on
CUDA framework.

5.1 TEST ENVIRONMENT

The computers used for the testing have following
configuration:

● CPU: Intel Core i5-5200U 2.20GHz
● GPU: Nvidia GeForce 920M (2048MB Memory)
● Memory: 2.20GHz DDR3 (8192MB)

For development and testing, Visual Studio 2017 is used.
For GPU processing, CUDA Toolkit 10.1 is used. Using the
Hadoop framework, the text was distributed on a cluster
of 3 nodes. JCUDA was involved to invoke CUDA kernels
from Java code on each HDFS node.

5.2 RESULTS

Table -1: Time taken for execution (in milliseconds) for
different text sizes.

No. of
chars

CPU
10

Threads
100

Threads
500

Threads

10000 10176.45 12023.84 1256.73 276.49

20000 20312.82 24096.33 2303.34 530.18

30000 31034.47 36201.93 3678.01 760.48

40000 40583.05 47936.17 4907.38 1015.74

50000 51396.11 61034.28 6179.57 1346.05

60000 61564.26 71124.05 7389.18 1592.38

70000 71891.49 83456.61 8599.06 1904.75

80000 82392.73 96345.34 9803.49 2267.11

Table -1 displays the relationship between the size of
input text and the time taken for execution (in
milliseconds) in traditional CPU-only mode and GPU
implemented multithreading mode.

Chart -1: Time taken for execution by CPU-only and GPU
multithreading mode.

Chart 1 represents this output graphically. The
relationship between size of input text and execution time
is linear. As we can see, the execution time is very less
when we implement RSA algorithm in 500-thread mode. It
is almost 40 to 50 times faster than the CPU-only mode.
This output proves that higher the degree of parallelism,
better is the performance.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 6307

Chart -2: Elements processed per millisecond in CPU-only

and multithreading mode

If number of threads are less, about 10, RSA algorithm
takes longer takes longer than CPU-only mode. This is the
result of co-operation processing and communication
overhead between CPU and GPU. It majorly consists of
copying of data from the host computer (CPU) to the
device (GPU). This can be verified in Chart -2.

6. CONCLUSIONS

This paper presented the CUDA based implementation of
RSA algorithm. We described the traditional RSA
cryptosystem. The large size of text and modular power
function act as the bottleneck for performance which is a
drawback for large scale implementation.

We used Nvidia’s Compute Unified Device Architecture
(CUDA) for parallel implementation of RSA. First, RSA was
executed in CPU-only mode. Then, it was implemented in
CUDA framework in 10-thread, 100-thread and 500-
thread modes. The results were compared which made it
clear that higher the degree parallelism, better us the
performance. The 10-thread mode gave a poor
performance as compared to CPU-only mode. It was a
result of communication and data transfer overhead
between CPU and GPU.

Apache Hadoop framework can be used for distributed
storage of large text files. All the nodes in the cluster store
a part of the text file and execute RSA in parallel on the
data.

REFERENCES

[1] R.L. Rivest, A. Shamir, L. Adleman, “A Method for

Obtaining Digital Signatures and Public-Key
Cryptosystems,” Communications of the ACM, vol. 21,
iss. 2, pp. 120-126, February 1978.

[2] John D. Owens, David Luebke, Naga Govindaraju,
Mark Harris, Jens Krüger, Aaron E. Lefohn, Tim
Purcell, “A survey of general-purpose computation on
graphics hardware,” Computer Graphics Forum, vol.
26, pp. 80-113, March 2007.

[3] NVIDIA Corporation, NVIDIA Compute Unified Device
Architecture Programming Guide, Version 10.1,
February 2019.

[4] Daniel Page, Nigel P. Smart, “Parallel cryptographic
arithmetic using a redundant montgomery
representation,” IEEE Transactions on Computers, vol.
53, no. 11, pp. 1474-1482, November 2004.

[5] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
Robert Chansler, “The Hadoop Distributed File
System,” Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and
Technologies, pp. 1-10, May 2010.

[6] Jeffrey Dean, Sanjay Ghemawat, “MapReduce:
Simplified Data Processing on Large Clusters,” Sixth
Symposium on Operating System Design and
Implementation, San Francisco, pp. 137-150,
December 2004.

[7] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung,
“The Google File System,” Proceedings of the 19th
ACM Symposium on Operating Systems Principles, NY,
pp. 20-43, October 2003.

[8] Yonghong Yan, Max Grossman, Vivek Sarkar, “JCUDA:
A Programmer-Friendly Interface for Accelerating
Java Programs with CUDA,” Proceedings of the 15th
International Euro-Par Conference on Parallel
Processing, pp. 887–899, August 2009.

