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Abstract - Mobile devices are prone to malware attacks. 
Many systems have been implemented to prevent these 
attacks but none are fruitful. The implemented system is a 
machine learning based malware detection framework 
which is used to protect the Android devices from major 
security threats. A large collection of dataset is used for 
training from which requested permissions are extracted. 
Based on these extracted permissions, a model is developed 
using the dataset and is tested using unknown malware and 
benign app samples. 
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1. INTRODUCTION  
 
Malware is a software which can cause potential threats to a 
computer, server, client, or computer network. Malware 
causes damage after it is implanted or introduced into a 
target's computer and it is in the form of an executable 
codes, script files and other softwares. The codes are known 
as viruses, ransomware, spyware, adware, worms , Trojans 
,scareware and many other forms. The commonly used 
methods for protecting against malware is to prevent the 
software from gaining access to the target computer includes 
antivirus software, firewalls and many other techniques. The 
main uses of them include preventing their access to target 
computers, checking the presence of suspicious activities, 
recover from malware attacks. Another strategy to 
differentiate malware apps from genuine Android apps 
includes sophisticated dynamic and static analysis tools to 
detect and classify malicious apps automatically. There are 
encryption techniques which will decrease the chances of 
malwares from being detected. To avoid this problem, we 
can study Android apps to extract permissions which are 
sensitive that are widely used in Android malwares. An 
automated malware detection system is used to fight against 
malwares and assist Android app marketplaces to detect and 
remove unknown malicious apps. 

Static analysis tools are used to extract source codes or byte 
codes, often traversing the paths of programs to check for 
some unique and hidden resources. Static analysis 
approaches are used for different tasks which includes the 
behaviour assessment of Android apps, detection of 
application clones, automatic test case generations, or for 
uncovering non functional issues related to performance. 
The important point which is to be noted is that the code is 
not executed or run but the tool itself is executed. The source 

code is the input to the tool and the mined features are the 
output.eg:-Drebin 

Dynamic program analysis is the analysis of Android 
applications by executing the programs on a virtual 
environment like Android Studio. The target programs must 
be executed with test inputs to produce the behavior. System 
calls are analyzed to monitor the behaviour of Android 
applications.eg:-TaintDroid 

Malware classification is an open problem commonly 
rectified by employing machine learning techniques. 
Permissions and API calls are extracted w Man is able to 
detect behaviors which are sensitive from Android 
applications. Most of the detections are based on the 
difference of permissions detected by benign apps and 
malware apps. By analysing the permissions requested and 
api call usages, benign app and malware app samples can 
effectively expose abnormal behaviors and finally  
distinguish malware from many genuine applications. 

So considering the drawbacks of the above techniques we 
propose a new model which is based on the extracted 
permissions from the apks and uses deep learning 
techniques to formulate the model. 

2. SYSTEM DESIGN 
 
Most of the malware detection tools uses the manual of lists 
of features based on permissions, api calls, sensitive 
resources, intents, etc., which are difficult to come by. To 
address this problem, we study the different real Android 
applications to mine hidden patterns of malware and are 
able to extract highly sensitive permissions that are widely 
used in Android malware.  
 
Benign apps are downloaded from apkpure.com which is a 
free site of benign apks from google playstore. Malicious 
apps are downloaded and are extracted from virusShare.com 
and Contagio Mini Dump. Features like Api related 
Permissions are considered to develop the system. 
Permission Distribution 
Permissions[1] from malwares and benign apps are 
identified. By analysis, Access_wifi_state,SendSms etc are 
commonly used by malwares. The requested permissions of 
the android applications are declared in a file called Android 
manifest of the respective apks. From the manifest files, 
permissions are extracted and are converted to a csv file. A 
large number of permissions are identified in the previous 
step. Out of which a few must be selected for further 
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processing. For that Mann Whitney test[2] is employed. For 
each permission, if a particular app uses that permission,the 
corresponding permission is set as 1 or else it is set to 0. 
These values are indicated by p values.[2] Therefore two sets 
of samples are generated. One to represent one specific 
permission usage of malicious apps and the other to 
represent specific permission usage of benign apps. In the 
previously created input file, a comparison test is applied. 
For each permission, the average values are computed for 
each of the feature vector. So from two sets of samples, we 
compute the average values. And those permissions with 
higher average values will be selected as the feature vector 
for training. 
 

2.1 Malware Detection 
 
This feature vector is divided into two. One can be used for 
training the model and the other can be used for determining 
the model parameters. The first feature vector is fed to the 
classifier. The classifier employed here is the Neural 
Networks and K-Means Clustering Algorithm. Two trained 
models will be created. The second feature vector is given as 
input to the model to determine the model parameters like 
accuracy, precision, recall etc. Unknown apks are then given 
as input to the model so that the model will predict these 
apks as benign or malicious. 
 

3. IMPLEMENTATION 
 
Here, we take a closer look at how the system was 
implemented. The whole system was developed using 
python language. 
 
Benign apps are downloaded from apkpure.com. Malicious 
apps are downloaded and extracted from virusshare.com 
and Contagio Minidump. A total of 135 benign apps were 
collected. A total of 327 malicious apps were collected. The 
features namely permissions are extracted using Python 3.7 
in Spyder. A package called Androguard[5] is used to extract 
manifest files from apks. The extracted permissions are 
correctly displayed on the screen. Feature Selection is done 
using Extra Tree Classifier which is included as a built in 
package in python. Feature selection is performed 
successfully using the dataset. 
 
Feature Vectors are generated by using Mann-Whitney 
test[3]. It is implemented using the inbuilt package called 
scipy.stats in Python 3.7. The weights and their 
corresponding feature names are written to a csv file. 
 
Training phase receives a training dataset which is a csv file. 
The model is trained using Neural networks and k-means 
clustering algorithm. Output of this phase is a confusion 
matrix and graphs showing the dataset which are classified 
correctly and incorrectly. The model is tested using different 
samples of both malware and benign apps. The output of the 

feature map as well as the prediction will be printed on the 
screen. 
 
The feature map generated for the training data sample is 
given in the figure below:- 
 

 
Figure 1: Feature Map of the training dataset 

 
The extracted permissions from the testing data sample is 
shown in the figure below:- 

 
 

 
Figure 2: Extracted Features from the test dataset 

The feature map of the test data sample and the prediction 
is shown in the figure below:- 

 

 
Figure 3: Feature Map of test data 

 

4. PERFORMANCE ANALYSIS 
 
Performance Analysis deals with the measurement of 
response time, Correctness of output and throughput of the 
proposed software.  
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A confusion matrix[7] is a table which is used to describe the 
performance of a classification model when a set of test data 
values are given as input to the trained system. The accuracy 
of the system gives us an overview of how accurate the 
system is when test samples are passed through it. The 
accuracy of the model is 88%. The accuracy is less because 
this system will bypass malwares using encryption 
techniques[4] and java reflection to encrypt source codes. 
This system is vulnerable to pollution attacks[5] which 
means malwares request permissions normally requested by 
benign app samples to avoid detection. The accuracy of the 
system is shown in the figure below. 
 
 

 
              Figure 4: Confusion Matrix and accuracy 
 
When compared to other techniques, this accuracy rate is 
very high. This model produces a good result when 
compared to Drebin[2], Taintdroid[3] and other Machine 
Learning techniques. 
 

5. CONCLUSIONS 
 
The implemented system collects datas in the form of 
Android apks from various Internet sources. The apks are 
extracted to collect features which are basically permissions. 
A feature vector is created based on the permissions and the 
given apks. This is the input to the ML algorithms to build a 
trained model. Unknown applications are used as input. An 
overall accuracy of 88 percent is achieved. 
 The main limitations of the model include:- 
 

 A large dataset must be collected to avoid 
overfitting problem. 

 The extracted permissions are limited because the 
number of malicious applications on the internet 
are very less.  

 This system considers the differences of malware 
and benign apps but it does not consider the 
categories of benign apps which can be useful for 
malware detection.  

 This system is open to Mimicry and Pollution 
attacks. 

  This system bypass malwares using Java Reection 
and bytecode encryption. 
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