
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4209

ALPYNE - A grid computing framework

Mohit Udupa1, Aditya K Pramod2, Manthan S S3

1,2,3Eighth Semester, Dept. Of CSE, The National Institute of Engineering, Mysuru

---***---
Abstract - Alpyne is a grid computing framework that
helps to set up a system of loosely connected computers that
work together and can be viewed as a single system. The
users can upload custom code or programs to make
exhaustive use of grid computing framework. Alpyne
includes restful API(Application Programming Interface)
service, python libraries and applications for grid
computing, built for easy installation, setup of all the
required nodes and make use of the interconnect network. It
makes running programs on several commodity hardware
nodes very easy. Alpyne also supports services like high
availability and load balancing. Load balancing is done
based on all available nodes, choosing the suitable nodes
and distributing the tasks based on the computing power of
the available nodes. Our service also provides support for
node failure management and efficient dynamic task
scheduling. The interface allows users to visualize the
resources used by all different nodes and jobs made on that
compute nodes. All computing intensive jobs can be
processed faster than on a single stand-alone machine. The
framework is based on docker containers for virtualized
environments for users and a file system interface on top of
mongoDB(Database) for data storage. The grid makes use
of interfaces modules for the above mentioned methods
which can be easily switched to other user developed
interfaces making it easy to use other methods of
virtualization and data storage.

Key Words: Grid computing framework, high
availability, load balancing, dynamic task scheduling,
failure management, docker environment, django
REST API.

1. INTRODUCTION

With the popularization of cloud computing and
distributed processing, the structure and setup time for
the grid has become more and more complex and tedious
task to do. Alpyne is a framework for grid computing built
using python. It makes it possible to run several functions
and programs on a system with several commodity
hardware nodes.

Alpyne framework for computer grid helps us set up
loosely connected computers that work together and they
can be viewed as a single system. Unlike cluster
computers, computer grids have more flexibility can be
easily scaled, controlled and scheduled by software.

Grids are usually deployed to improve performance and
availability over that of a single computer, while typically

being much more cost-effective than single computers of
comparable speed or availability.

Alpyne provides with all necessary endpoints for easy
installation and setup of compute and data nodes. The
service also provides features to enhance the functionality
of the framework by through client side APIs for easy
building of managers. The users can upload custom code
and make exhaustive use of grid computing hardware. All
computing intensive jobs like training, testing and running
predictions on Machine learning models and Big data
analysis can be processed faster than on a single stand-
alone machine.

The goal is to get more computing power and better
reliability by orchestrating a number of low-cost
commercial off-the-shelf computers. High availability and
Load balancing are given highest priority at all times by
our service and features have been built for the same.

Other features include and web-based UI(User Interface)
for monitoring the grid. This will allow system
administrators to scale, reallocate, remove and assign
computing hardware to the grid during runtime.

2. EXISTING SYSTEM

Hadoop, Apache Spark, Apache Storm, Flink and Samza are
all open source and some of the most popular frameworks
for grid computing. Although the above-mentioned
frameworks support applications in python for grid
computing, they are not primarily designed to work with it.
There can be some overhead when dealing with
applications that use some special modules, data types and
operations from python[1].

All these above-mentioned systems require the data and
code to be in specific formats. While big data isn’t
exclusively made for big businesses, not all big data
platforms are suited for small data needs. Unfortunately,
the Hadoop framework happens to be among them. Due to
its high capacity design, the Hadoop Distributed File
System or HDFS, lacks the ability to efficiently support the
random reading of small files (lesser than 128MB, the block
size of HDFS). As a result, it is not recommended for
organizations with small quantities of data. Most of the
existing systems use batch processing which makes it
slower. The setup time of existing solutions take a long
time and makes it inefficient for small tasks[2].

They also require a large set of dependencies to be
installed, updated and maintained, which can sometimes
be OS and/or hardware specific. This means setting up a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4210

grid will take a long time and it can sometimes not be the
best use of a developer’s time especially when the
requirement for the grid is for a short time.

3. OBJECTIVES

The objective is to build a framework of libraries and
server applications that will seamlessly work with each
other. System administrators will be able to easily install
the grid system onto their computing hardware and
clients will be able to interact with the above-mentioned
grid and queue code and data for execution on the grid.

The libraries provided for the client will also include
guidelines for the client to design their own grid
applications for map, reduce and filter based problems.
This can be used to extend the grid system to run
applications on data analysis, machine learning, etc.

The compute nodes and data nodes will use modular
interfaces to standard applications like dockers for
computing and databases for data storage which can be
easily swapped out for a different module to change the
back-end of the nodes.

Separate data, compute and management planes allow the
data nodes and compute nodes to be used independently.
There will be no one manager to the system but every
client will manage his own access to the grid. The overall
access management to the grid will be distributed among
the nodes in the grid.

Expose all nodes in the grid via REST(Representational
State Transfer) or any other popular interface, making
every element in the grid programmable and customizable
without the need for any major code upgrade, this can be
used to emulate any behaviour in the grid.

4. PROPOSED SYSTEM

The proposed system is a simple and easy to set up grid
computing framework built completely in python. The
system can be set up at a node with minimal difficulty since
it requires only python installation for the required
operating system. It uses django restful service for
communication between clients, database and compute
nodes.

It primarily uses TCP(Transmission Control Protocol) as
the message passing intermediate system. The system will
not rely on an always distributed file system solution like
HDFS. Instead, it will only distribute data as and when
needed by the client.

It will be compatible with all of pythons modules, data
types and operations, including custom user-defined types.
The client can interleave multiple compute nodes and

container databases to program as they require to suit
different codes.

The framework will provide blueprints and guidelines for
Map, Filter and Reduce operations. Users can use these
templates to implement their own code and push it to all
the nodes using the user interface or the API service. The
system will include all functionalities of current grid
computing frameworks like Load balancing, Fault
tolerance, Data redundancy, Co-location of code and data,
high availability etc.

The system will use custom application layer protocols
designed for low latency and interrupt based
communication between nodes with support for
encryption and compression. The /system will also support
an easy to use web-based UI(User Interface) to manage and
control the grid.

Our system uses a benchmark standard to test the
capabilities of all the available commodity hardware nodes,
takes decisions according to the results and divides the
tasks accordingly to all these compute nodes.

5. SYSTEM ARCHITECTURE

The Alpyne network consists of three components namely
the compute nodes, the database and the client code. The
compute nodes and the database together form the Alpyne
pool. The client code acts as manager to the Alpyne pool.
The client defined code is also the code that runs on the
Alpyne grid which makes use of the all the features that are
provided in the grid. The following illustrates elements of
the Alpyne grid in detail.

5.1 ALPYNE POOL

Fig -1: Alpyne Pool

The Alpyne pool consists of one or more elements such as
the compute node or the container database. Every
element in the Alpyne pool has soft links with each other.
So the compute nodes and the container databases
although connected to each other via the same shared
network can operate independently and self standing.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4211

The Alpyne pool can be scaled up or down without
affecting the working of the pool as of the independence of
the compute nodes and the container databases. The Client
code acts as the manager to the entire Alpyne pool. The
client can decide to have adequate and feasible number of
compute nodes and databases to handle his grid computing
tasks.

This pool can be located in the same datacenter / building
or anywhere across the internet. Each of the pools
elements will be given a score of performance. This score
will be based on the hardware specifications, network
connectivity and other performance metrics of the element.
The manager uses this score to allocate jobs and data to
these elements.

5.2 ELEMENTS OF THE ALPYNE POOL

1) Compute node :

Fig -2: Compute engine

The compute node is a restful and a programmable
computation environment used to execute client defined
jobs. The restful service provides features to make Rest
API calls to allocate jobs, delete jobs, get status and results
of those client defined jobs. The compute node is
programmable as it relies on docker environments.

Since it is based on docker environments all the resources
like storage, processing and memory resources are
virtualized, secure and metered as required by the admin.
The compute node has its own database to keep track of
all the jobs allocated by the client and the supporting files
required by those client defined jobs.

A compute node can operate without the need of an
external database or any specialized client library. On
failure, the compute node restarts itself and picks up any
client jobs that might have crashed due to the failure or
closed unintentionally. This feature provides local
recovery for all the compute nodes.

The compute node also comes with a simple web-UI. This
UI provides a read-only access to the current resource
usage of the compute node. This includes details about the
running, queued and stopped jobs. The UI also provides a
look at the overall load on the compute node. The reason
for the UI to be read-only is to make it independent in the
grid. By stripping the some access in the UI, the managers
can be more effective with their control.

2) Container Database :

Fig -3: Container Database

The container databases uses a mongoDB in the backend.
This Database has a container abstraction interface to
organize files and folder like structures, which are used by
the client jobs. These files can be used by compute nodes
for running any user defined jobs. Multiple databases can
be setup in mirror mode to allow for data duplication and
redundancy. Every database is independent of each other
and is unaware of the global shared storage.

The container database provides API calls for interaction
between compute nodes and the mongoDB which its
based on. Using these API calls files and folder like
structures can be accessed by the compute nodes
whenever client job requires it to access them. The access
to the container database is authenticated and only
authorized clients can access them.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4212

5.3 ALPYNE MANAGER

Fig -4: Alpyne manager

The Alpyne manager is the integral part of the Alpyne grid.
It is the client side code that uses the restful compute
nodes and the container databases to run client defined
jobs on the Alpyne pool. Since the Alpyne manager code is
maintained by the client the entire extent of the job will
only be known only to the client keeping it hidden from
rest of the Alpyne pool, hence ensuring security.

The client can use the restful nature of the compute nodes
and the set of tools provided by the client side library to
implement his own level of cluster management system.
The client library provides API calls to push data into the
container databases and pull data from the container
databases. The client library also provides API calls to
interact with the compute nodes and provides functions
for parallel operations like map, filter and reduce
operations. The manager can be a simple script to run a
job on one compute node without support from any
container databases or a complicated service,
implementing code and data replication to further
increase reliability and code distribution.

5.4 ALPYNE GRID

The Alpyne grid consists of one or more Alpyne managers
and one or more Alpyne pool elements. An Alpyne
manager can access the pool via login credentials which
can be obtained by registering to the pool elements. This
registration process can either be set open or
administered. The following is the schematic Alpyne grid
diagram.

Fig - 5: Alpyne grid

6. SYSTEM WORKFLOW

In this section we explain the overall workflow of our
Alpyne grid computing system, in addition to some of the
prominent features the system provides.

6.1 JOB ALLOCATION

A client job begins with a set of tasks. The Alpyne manager
uses the distribution API from the client library to
distribute the tasks between multiple compute nodes in
the Alpyne pool. This task distribution is based on how
much load the compute node is experiencing and also the
custom benchmark scores from those compute nodes.

Next the Alpyne manager uploads the data and required
files into the container databases using the client library.
The Alpyne manager chooses the required level of data
duplication that is required for the client defined task. The
client library also allows clients to upload live python
objects to the container databases in suitable pickle
formats.

Then the Alpyne manager allocates the distributed jobs to
the compute nodes and waits for the results from those
compute nodes. The Alpyne manager can also take care of
failovers based on client task requirements. These
allocated jobs can be of the type map, filter or reduce
operations. Once the job execution is finished, the client
can read the results back from the container databases.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4213

6.2 FEATURES PROVIDED

If a compute node fails then the Alpyne manager can
reallocate the incomplete jobs to a different compute node
or it can wait for the same compute node to pick up any of
the jobs that might have crashed due to the failure or
closed unintentionally once it automatically restarts.

If one of the container databases fail then the redundant
copies of the data can be used as backup by the compute
engines and recovers from failure. Database recovery
tactics have been researched and perfected for a long time.
The mongoDB data nodes can be easily setup in mirror
mode. They also provide rollback strategies like
checkpoint recovery.

If the Alpyne manager fails then the Alpyne pool elements
like the compute nodes and container databases will still
continue to execute the task at hand. Once the Alpyne
manager restarts it can fetch back the results from the
container databases. This asynchronous behaviour is
because the Alpyne pool does not require any constant
monitoring from the Alpyne manager to run. This is how
the system reduces the risk of single point failures and
achieve good reliability with limited hardware. Using the
above services high availability and failure recovery is
achieved.

7. CONCLUSION AND FUTURE ENHANCEMENTS

The Alpyne grid computing system is a framework of
libraries and server applications that will seamlessly work
with each other. System administrators will be able to
easily install the grid system onto their computing
hardware and clients will be able to interact with the
above-mentioned grid and queue code and data for
execution on the grid. Hence the promised easy
installation process is achieved with less hassle. Features
like high availability, failure recovery, dynamic task
rescheduling, node failure management can be easily
utilised by clients based on their requirements. As
compute nodes are based on docker environments they
are highly modular and scalable. Due to this virtualization
the client data is secure and is managed at his own
resolution.

Although the final product obtained at the end of the
development cycle met all the expectations that was set
out for in the beginning, the framework can still be
improved with some more development. One of such
improvements would be the addition of service jobs.
These jobs will run as a service which will never end.
These can be used to deploy web based applications in
Alpyne. Another improvement would be by adding a
proper file system. Docker containers can be used for this
process, providing more flexibility with how data is moved
between the elements of the pool.

With such improvements along with other performance
and security improvements, the Alpyne grid can be used
for applications like, Big-Data, Machine learning, Web
hosting, Programming sandbox and many more.

REFERENCES

[1] Improvements in Big Data Hadoop Several hybrid

efficiency methods by Ye Zhou and Amir Esmailpour.

[2] Hadoop Configuration Tuning With Ensembling
Modeling and Metaheuristic Optimization by
Xingcheng Hua, Micheal C. Huang and Peng Liu.

