
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3377

Container Live Migration using Docker Checkpoint and Restore

Sankaran. S1, Dr. C. Vijayakumaran2, Mr. Karthick Nanmaran3

1,2,3Department of Computer Science and Engineering, SRM Institute of Science and Technology
Chennai, India

---***--
Abstract – The container-based virtualization makes it easy to host application containers these containers run
within the same kernel with isolated resources. This isolation makes container independent of the underlying hardware
and operating system which allows the container to move freely between host machines, the movement of the container
from one machine to another is known as migration. The increased use of the container has demand scalability and
flexibility of the application container and also on demand service with lesser downtime. The application containers are
basically an isolated process, these process state can be saved and restored to the same machine or to another machine.
In this paper, we presented the experimental setup for containerizing the RYU SDN Controller and Mininet (SDN
network emulator) and perform Live Migration using these containers. Docker is used to containerizing the application
into application container and CRIU project is used to create the checkpoint for the container state and restore the
container to the same host or to the different host machine.

Keywords : Container platform, Virtualization, Migration, Docker, CRIU, SDN (Software Defined Networking), Mininet.

1. Introduction

In the early years, we use a less capable system that can
perform only limited functions so the hardware cost was
really higher but today we have powerful machines that
are capable of performing larger tasks in lesser time and
the infrastructure cost is reduced way lesser when
compared to the early periods. The resources available
in servers are abundant they can be used for another
process along with the running process. The
virtualization concept was proposed in the early period
but it was not popularized because of the cost of the
infrastructure was really high but today we can use the
virtualization to our advantage because of powerful
machines even home computer is capable of running a
huge process.

Virtual machines are introduced in the later period that
is capable of emulating the physical machine and works
as a physical machine in an isolated environment. These
physical machine resources are partitioned into multiple
virtual machines and they are isolated from one another.
Each machine runs on its own hardware allocated to it
form the physical machine and also has its own
operating system. The virtual machines have eliminated
the use of multiple physical machines and also the space
required for the physical machine. From the server,
multiple virtual machines instance can be created and
deployed to the end user. The Virtual machines images
are depended to the platform and also each VM runs on
their own operating system which is an overhead for the
virtual machines. The virtual machines have introduced
cloud-based architecture in virtualization. The various
services are provided over the cloud with the virtual
machine by providing the end user with the control over
the virtual machine with limited access.

The virtual machines with access control over the layer
of the virtual machine provided with the services like

 Infrastructure as a service
 Platform as a service
 Software as a service

Containers are developed in order to overcome the
problems faced in virtual machines, the containers have
operating system level abstraction whereas virtual
machine has hardware level abstraction which
eliminates the use of multiple operating systems.
Containers are an isolated process that runs on the same
kernel the construct of the container is similar to that of
virtual machines they are also known as machine
containers. These machine containers are similar to
virtual machines without the hardware layer. The Linux
containers are similar to the machine containers which
provides an isolated environment within the Linux
operating system. The application container changed the
cloud services into machine-based to application based
architecture. The application container is independent of
the underlying operating system and hardware. The
capability of the container to migrate is examined in this
experimental setup the basic approach of migrating the
container would be stopping the container and resuming
it after migrating it to another host but in live migration,
the container migration should be seamless to the end-
user.

Virtual machines are one class of virtualization with the
hardware level abstraction the hypervisor supports
migration of virtual machines whereas in the container it
gets complicated because the container is a process so
we are basically performing process migration.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3378

2. Container Engine

Container engines are used to provide operating system
level abstraction the docker uses docker-ce to create
container platform whereas LXC doesn’t have container
engine it is inbuilt functionality of Linux system LXC is a
feature for Linux operating system. Docker creates
application containers which are different from LXC it is
machine container, the docker creates container upon
docker image. The container engine is similar to the
hypervisor in the virtual machines which creates
operating system level abstraction.

2.1 LXC\LXD:

The LXC is a machine container also known as Linux
containers which creates the isolated Linux environment
feels like a separate machine running within the same
kernel. LXC is similar to the virtual machine but it does
not have a hardware layer. The Linux operating system
provides with the isolated Linux environment with to
run applications, LXC allows multiple containers to run
within the same kernel. LXC mimic the functionality of
the virtual machine with lesser overhead this provides
efficient use of Linux kernel.

2.2 Docker:

Docker is a container platform used to the containerized
application, application container is a package of
application, libraries and configuration file they are
independent of underlying operating system and
hardware. The Docker platform is used to create a
containerized application by a building docker image.
The docker image is built using docker file which has a
set of instruction to build the containers, the docker file
has instruction to create an environment for the
application to run along with the dependencies. LXC run
directly on the top of Linux kernel whereas docker
container runs on the top of container engine.

3. Container Orchestrator

The containers are lightweight and multiple instances of
containers can be deployed on the system and also on
the virtual machine, to manage the multiple instances
the container orchestrator is used. The container
orchestrator provides the solution to manage the
container instance on the dashboard or terminal even
with the larger containers network the complexity of
managing the container can be solved using the
container orchestrator. Each container platform has its
own orchestrator, Docker has Docker Swarm and LXC
has LXD and kubernetes is an opensource container
orchestrator which works with docker container it is

similar to docker swarm and also has better functionality
than docker swarm.

3.1 Kubernetes

Kubernetes is an opensource project for container
orchestration developed by Google it helps in managing
the Docker containers. Kubernetes helps to perform
automation in container deployment and scaling of
containers, it can be deployed on-premises for cloud
services. Kubernetes can also work with other container
platform and docker with kubernetes provides flexible
container management services and automation.
Kubernetes provides the platform to work with
containers not only docker containers but also with
other containers, it gives means to do deployments,
scaling and monitoring of containers. Kubernetes
container cluster will monitor all the containers if any
container goes down it tries to heal the container by
itself or redeploy the container. In this experiment,
container orchestrator is not required as we use two
containers but if we have to handle multiple containers
the orchestrator like kubernetes comes in handy.

3.2 Docker Swarm:

Docker swarm is also a container orchestrator developed
by Docker, Inc. The Docker swarm is used for container
cluster management provides the ability for
administrators and developers to manage the containers.
It helps with managing the group of containers, the
docker swarm has swarm manager node and Docker
container node the swarm manager takes care of the
docker container nodes. A swarm is basically a group of
containers forming a cluster. The docker swarm also
helps in monitoring all the containers health and
ensuring all containers are up and running scaling the
containers and updating the changes in the containers.

4. Container Deployment

The Virtual machines isolated machines that emulate the
function of the physical machine and works just like a
physical machine inside the physical machine. Each
virtual machine has a virtual hardware layer allocated to
the virtual machine, running multiple virtual machines
can degrade the performance of the physical machine.
The virtual machine is a package of hardware, operating
system, and application whereas the containers are
lighter when compared to a virtual machine with lesser
overheads.

Docker Container platform is software used to create the
containerized version of the application. Docker allows
the user to build the application in a layered approach
where the user can write the docker file for building the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3379

container the docker file includes the dependencies and
environment for the application to build upon.

4.1 Experimental Setup

In this experimental setup, two virtual machines are
created with the configuration that satisfies the
requirement table mentioned in table 2 and table 3.
Docker software is installed in both the machines to
work with the container docker can perform several
functions like build container image, create a container,
and also destroy the container. To perform migration the
Docker version should be version 13.1 and above and it
should run in experimental mode, to enable
experimental mode the experimental value should be set
true in docker daemon.json file. CRIU is also installed in
both the machines, Docker supports CRIU only if the
experimental mode is set to true.

Table -1: Experimental setup

Host Name Component to Install
master.docker.io Docker, CRIU
node.docker.io Docker, CRIU

Master Docker machine should have the minimum
following requirements

Table -2: Master machine minimum requirement

Master-Docker-Machine Docker version 13.1 or

higher

 Minimum 2GB of RAM

 Minimum 10GB of free

disk space

 Linux kernel 3.11 or

above

Node machine should have the minimum following
requirements:

Table -3: Node machine minimum requirement

Node-Docker-Machine Docker version 13.1

or higher

 Minimum 2GB of

RAM

 Minimum 10GB of

disk space

 Linux Kernel 3.11

or above

Both the machine contains a docker image from which
the container will be created we can also create a
common repository where the machine can share the
docker images, Migrating the docker image won't be an
efficient way so we can pull the docker image from the
common repository. But for this experimental setup, we
can have required docker image on both the machines to
create containers.

4.2 SDN Testbed:

The SDN Testbed is used to perform research on the
software-defined network, the testbed consists of an
SDN controller and Mininet to created emulated the SDN
switches and host. The tradition network has decision
logic and forward plane coupled together whereas in
SDN Architecture the decision logic is centralized, it
provides with a programmable network which is flexible
and easy to manage the larger networks.

Fig -1: SDN Architecture

The physical SDN switches functionality is emulated in
the Mininet we can create a emulate a simple network
and connect the network with an SDN controller. The
control layer consists of the SDN controller which is the
brain of the network and the Infrastructure layer
consists of all the network devices to forward data in
response to controller decision.

In this experimental setup, the SDN controller is
containerized using Docker and the network emulator
software is also containerized to perform the migration.
Basically, the virtual machines are used for the testbed
but the virtual machine has a lot of overheads so in this
setup the docker image is created for RYU controller and
Mininet and migration of the container is performed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3380

5. Virtual Machine Migration:

A virtual machine is a software that emulates the
function of the physical machine the virtual machine
consists of emulated hardware and operating system and
on top of it the applications of the virtual machine. A
virtual machine allows the user to run multiple
operating systems simultaneously in a single physical
machine with multiple virtual machines inside it. A
hypervisor is a software that creates one or more virtual
machines and also monitors the virtual machines that
are available, the server in which the hypervisor is
installed is known as host machine from which the guest
machines or virtual machines are created this is known
as server virtualization. The hypervisor allocates the
resources like CPU, RAM and hard disk space for the
virtual machine from the available resource pool and
handles the resource allocation conflicts between virtual
machine. The virtual machine has isolation from the host
machine and all from another virtual machine which can
different operating system and also with the different
application running on it. The hypervisor is controlling
and monitoring the completely emulated machine, the
system suspends and resume is supported entity for
virtual machines. The hypervisor supports migration of
virtual machine which is a solved problem the virtual
machine entity can be suspended and migrated to the
other host or same host and can be resumed on the same
host.

Fig -2: Virtual machine Live Migration

The migration involves several metrics like application
downtime, total time is taken for migration and the data
that has to be transferred. The total time for a migration
is proportional to the size of data to be copied to the
destination.

6. Container Live Migration:

Virtual machines are works, operates just like physical
machines which actually emulates the hardware that
imposes overheads which is very inefficient. Container

machine is a construct which is exactly like a virtual
machine without the hardware emulation layer, the
container machine is isolated from the other process
which makes it appear like a separate machine running
on the same kernel on the same hardware. Container
machine gives the full machine experience just like
Virtual machine with lesser Overheads. This container
machine is also similar to the Linux container LXC/LXD
whereas Docker shrinks the envelope of the Linux
container into a single application process. Docker
container is basically an application process running in
an isolated environment, it is a software package.

The Container migration is basically the movement of
the container from one host to another host, it is mainly
performed during hardware maintenance or upgrading
the system to reduce the downtime. Live migration is the
process of retaining the state of the container even after
the migration, it should not interrupt the user work and
change host should seamless to the end user. Most of the
hypervisors support live migration this capability is used
as an advantage by the virtual machine to migrate them
in any situation but Virtual machines are one class of
virtualization now that containers are widely adopted
and growing eventually. OpenStack ecosystem also uses
containers like Magnum, Kolla, Kubernetes as their
project so their uses are growing there is an expectation
that like virtual machines, the container also should have
the capability to perform migrate. Hypervisor is
controlling a completely emulated machine which has a
capability to suspend and resume which solves the live
migration problem in the virtual machine whereas
containers are the process on Linux system that is
isolated so basically the container migration is process
migration, the process is migrated from the one Linux
system to another which is not easy to perform until the
development of CRIU project.

6.1 CRIU:

Checkpoint Restore In Userspace(CRIU) is used to freeze
and restore the process state in the Linux system. For
creating a checkpoint and restore the process state
kernel should support this work is accomplished in
Linux kernel 3.11, CRIU uses this capability to freeze all
the process state which can be migrated to the other host
and restore the process to continue from the frozen
state. CRIU support is implemented on the docker engine
1.13 release and above, CRIU allows the user to create a
checkpoint for the docker container process and the
checkpoint metadata can be migrated to restore the
container process on the different machine.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3381

Fig -3: Container Live Migration

 6.2 Case Study - Busybox Container Migration:

In this case study, a simple container is migrated from
one machine to another the setup has docker of the same
version on both the machine with experimental mode
enabled and both machines should be within OpenShift
cluster. Busybox Image is pulled on the host system the
container image is available in the Docker Hub.
OpenShift pulls the image from the Docker Hub image
repository, Busybox is basically an executable file with
the common Unix utilities. In this scenario the Busybox is
programmed as a counter which simple counts from zero
and goes on, the pod is created and the route is exposed
for the container. The main idea is to migrate the
Busybox container running in the pod in the master
machine has to be migrated to the node machine. The
container migration is performed using the open source
project known as CRIU which creates process checkpoint
by freezing the container state the process info, thread,
memory and log file metadata is transmitted to the node
machine. In the node machine, the metadata is used to
initiate and restore the process state of the busybox
container.

Fig -4: Busybox Container Migration Scenario

6.3 Case Study - SDN Testbed:

In this case study SDN test bed is created in a container
environment which has the Ryu Controller container and
Mininet Container. These two containers are custom

built containers they are built using docker, the docker
compose file is used to create a docker image from which
the containers are created on top of the image. The
docker image creates an isolated application from the
same image multiple containers can be created and
deployed. The Ryu docker image and Mininet docker
image is present on both the machines the Ryu container
created and it can be used to connect to virtual or real
SDN network. The Mininet container is created, inside
the Mininet container virtual SDN network is created
with virtual switches and hosts. The Ryu controller is
connected to the virtual network through the Ryu
container IP address now the Mininet container is
connected with the Ryu controller container. Both the
containers are running in the Master machine now the
Ryu container is migrated to the node machine without
any connection interruption with the controller. The Ryu
container process checkpoint is created and the
container checkpoint metadata is migrated to the node
machine and restore the container process to the end
user it will be container changed between the nodes is
unnoticeable with lesser downtime.

Fig -5: SDN Testbed Container Migration Scenario

7. Conclusion

The CRIU is used to create a checkpoint and restore the
container process on the same machine or to another
machine. The virtual machines are widely used all over
but the overhead in virtual machine degrades the
resource utilization and the migration required a lot of
preprocessing and the files should be migrated without
any network interrupts to have proper and successful
migration the migration metadata is larger for the virtual
machine when compared to the containers. The
container image size is smaller when compared to the
size of the virtual machine and multiple container shares
the same kernel save the storage space. Even the
migration metadata is comparatively less so the
downtime for migration is also less for containers.

When creating the checkpoint, the downtime appears
when it involves the file system for migration there can
also be conflicts if the migrated container is assigned
with the same IP address and port as the container

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3382

already present in the destination machine. The
Application containers can replace many applications
with the micro services and modular approach when
these containers provided as a platform as a service
using OpenShift

References

1. Bazel: {fast, correct}—choose two;
http://bazel.io.

2. Burrows, M. 2006. The Chubby lock service for
loosely coupled distributed systems. Symposium
on Operating System Design and
Implementation (OSDI), Seattle, WA.

3. cAdvisor; https://github.com/google/cadvisor.
4. Kubernetes; http://kubernetes.io/.
5. Metz, C. 2015. Google is 2 billion lines of code—

and it’s all in one place. Wired (September);
http://www.wired.com/2015/09/google-2-
billion-lines-codeand-oneplace/.

6. Schwarzkopf, M., Konwinski, A., Abd-el-Malek,
M., Wilkes, J. 2013. Omega: flexible, scalable
schedulers for large compute clusters. European
Conference on Computer Systems (EuroSys),
Prague, Czech Republic.

7. Verma, A., Pedrosa, L., Korupolu, M. R.,
Oppenheimer, D., Tune, E., Wilkes, J. 2015.
Large-scale cluster management at Google with
Borg. European Conference on Computer
Systems (EuroSys), Bordeaux, France.

8. P. Purohit, R. Kadikar, M. Susila and B. Amutha,
"Study of Service Chain Optimization in Cloud
Environment," 2018 International Conference
on Communication and Signal Processing
(ICCSP), Chennai.

9. Sharma, A. Saxena and K. Nanmaran, "A Survey
on Live Virtual Machine Migration," 2017
UKSim-AMSS 19th International Conference on
Computer Modelling & Simulation (UKSim),
Cambridge

10. Valluvan. S, T. Manoranjtham, Dr. V. Nagarajan,
“A study on SDN controllers, International
Journal of Pharmacy and Technology”, Open
Access Volume 8, Issue 4, December 2016, Pages
5234-5242 Scopus SNIP (.237)

11. OpenShift;
https://docs.openshift.com/container-
platform/3.9/upgrading/index.html

12. CRIU; https://www.criu.org/Main_Page
13. OpenVZ. http://openvz.org

https://docs.openshift.com/container-platform/3.9/upgrading/index.html
https://docs.openshift.com/container-platform/3.9/upgrading/index.html

