Thermal, Structural and Magnetic Properties Study of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$

Nanomagnetic Material

Gishu Semu Telila

Department of Physics, College of Natural Science, Arba Minch University, Arba Minch, Ethiopia

Abstract - Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ nanomagnetic material was synthesized by solid state reaction method at a temperature of 800°C using high pure metal oxide raw materials. Thermogravimetric analysis (TGA)-differential thermal analysis (DTA), powder x-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, electron spin resonance (ESR) spectroscopy characterization techniques were utilized to investigate the thermal, the structural and magnetic properties of the synthesized sample. The total weight loss regions were identified from TGA-DTA analysis. The XRD and FT-IR analysis revealed the formation of cubic spinel structure withFd-3m space group nanosized material. XRD measurement also showed that the synthesized material in the form of powder has an average crystal size of 20 nm. From the ESR spectroscopy investigation, wide line width and large g-value were identified. The large value of Lande’s g parameter revealed the dominance of the dipolar interactions in Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite particles.

Keywords: Solid state reaction method; Characterization; Thermal property; Structure; Magnetic property.

1. INTRODUCTION

Ferrites are magnetic compounds which are composed of metallic oxides and iron oxide as their main components. Most of ferrites have spinel structure with a formulae AB$_2$O$_4$, where “A” are divalent ions such as Ni$^{2+}$, Cu$^{2+}$, Co$^{2+}$, Cd$^{2+}$ etc. and “B” are trivalent ions such as Fe$^{3+}$, Cr$^{4+}$ and Al$^{3+}$ [1]. In recent years, spinel ferrites have been investigated because of their great useful electrical and magnetic properties as well as their wide applications, such as microwave devices, magnetic switches, electromagnetic circuits, magnetic cores, medical diagnostics, information storage etc. [2]. These properties of ferrites depend on several factors, such as synthesis method, the distribution of cations along the tetrahedral and octahedral cites, calcination as well as sintering conditions, chemical composition, crystal size and cation distribution in the two sub-lattices [2,3]. Moreover, these properties of spinel ferrite can be controlled by chemical composition, substitution, method of synthesis and the particle size.

Therefore, serious studies have been carried out to improve the magnetic and electrical properties of ferrites. Ferrites are very known magnetic materials widely used in different technological applications [1,2]. They have a structure with a formula AB$_2$O$_4$, where “A” are divalent cations such as Cu$^{2+}$, Co$^{2+}$, Cd$^{2+}$, Ni$^{3+}$, Zn$^{2+}$ and “B” are trivalent cations such as Co$^{3+}$, Al$^{3+}$, Fe$^{3+}$ [3,4]. Depending on the cation occupancy, spinel ferrites are basically classified into normal, mixed and inverse ferrites. In normal spinel, the divalent cations “A” are positioned at the tetrahedral sites and the trivalent cations “B” on the octahedral sites. In mixed spinel structure, both divalent and trivalent cations occupy both the tetrahedral and octahedral sites. In an inverse spinel, “A” cation occupies one half of the octahedral coordination sites and half the “B” cation occupies the other half octahedral sites as well as all tetrahedral sites. For instance, NiFe$_2$O$_4$ has an inverse spinel crystal structure [4,5]. Thus, Ni cations occupy half of the octahedral coordination sites and Fe cations occupy the remaining half octahedral sites as well as all tetrahedral sites. The unit cell of spinel ferrites contains 32 oxygen atoms in cubic close packing with 8 tetrahedral and 16 octahedral occupied sites. In recent years, nanocrystalline ferrites have attracted much interest because of their unique magnetic properties and their promising technological applications. These ferrites are materials of interest because of their unique electric, dielectric and magnetic properties. They are also very important group of magnetic materials due to their extensive use in a wide range of applications from low to high permeability devices including electronics, ferrofluid, magnetic drug delivery microwave devices, and high density information storage devices [6-10].

Spinel ZnFe$_2$O$_4$ ferrite has received broad interest in various fields, because of its unique physical and chemical properties. It has also very wide technological applications, such as drug delivery technology and magnetic resonance imaging (MRI) and photocatalysis [11-14]. The bulk ZnFe$_2$O$_4$ has a normal spinel structure with Zn$^{2+}$ ions are preferentially occupied the tetrahedral (A) sites and the octahedral (B) sites are occupied by Fe$^{3+}$ ions. However, the cation distribution in tetrahedral and octahedral sites depends on the particle size and the synthesis method [14].
It has also been reported that the reduction of the particle size can induce the formation of partially inverse spinel structure with novel magnetic properties such as net magnetic moment and ferromagnetism at room temperature [15–18]. Different authors reported that the physical properties of ZnFe₂O₄ can be improved by the substitution of the divalent or trivalent magnetic or diamagnetic cations [19–22].

ZnFe₂O₄ ferrite has been synthesized by various methods such as solid-state reaction, sol-gel, hydrothermal, co-precipitation, combustion techniques [23–25]. Solid state synthesis method is mostly utilized to prepare ZnFe₂O₄ based ferrites materials due to its simplicity in synthesis procedure, low-cost and suitability for mass-production. In this study, solid state synthesis method was chosen for the synthesis of Zn₀.₈₅Mg₀.₁₅Fe₂O₄ ferrite. TGA-DTA, XRD, FT-IR spectroscopy, ESRS were employed to study the thermal, structural and magnetic properties of this ferrite material.

2. MATERIALS AND METHODS

2.1. Synthesis Procedures

Mg cation substituted ZnFe₂O₄ nanomagnetic material with a chemical formula Zn₀.₈₅Mg₀.₁₅Fe₂O₄ was synthesized by solid state reaction method using high pure Zinc Oxide (ZnO), Ferric Oxide (Fe₂O₃), Magnesium Oxide (MgO) starting materials. Stoichiometric amount of the ZnO, MgO and Fe₂O₃ raw materials was initially mixed together and well ground into a fine powder using agate mortar and pestle for about two hours. Further, about four milliliters amount of methanol was added to into the mixture for homogenizing the mixture and grounded for an hour. The obtained powder material was calcined in air at a temperature of 800°C for 12 hours in controllable furnace with 5°C/min for both heating and cooling. The calcined powder was finally crushed in an agate mortar to obtain the final product.

2.2. Material Characterizations

Thermal analysis of the sample was conducted using simultaneous DTA-TGA thermal analyzer apparatus (DTG-60H) instrument. For this purpose, about 14.74 mg sample was used and this sample was heated from room temperature to 1000°C in the TGA furnace at a heating and cooling rate of 10°C per min in in nitrogen atmosphere. The crystal structure of the resulting Cu₀.₈₂Zn₀.₂Fe₂O₄ material in the form of powder was identified by XRD using a Phillips XPERT-PRO diffractometer using Cu Kα radiation (λ = 1.54060 Å). The diffraction pattern was recorded in angular range between diffraction angles 2θ = 20° and 80°. The infrared spectrum was obtained in the transmittance method with potassium Bromide (KBr) as IR window in the wave number region of 400 - 1,500 cm⁻¹ using ALFA-T instrument. The room temperature magnetic measurement of the prepared sample was carried out with electron spin resonance spectroscopy using JEOL model FA100 instrument. The external magnetic field was applied in the range of 50 to 500 mT.

3. RESULTS AND DISCUSSION

3.1. Thermal Analysis

Thermal analysis study of Zn₀.₈₅Mg₀.₁₅Fe₂O₄ sample was conducted by heating 14.74 mg of the mixture of ZnO, MgO and Fe₂O₃ precursors before the calcination process in the temperature range of 15°C to 1000°C. The obtained TGA-DTA curves are shown in figure 1. As it can be seen in the figure, the thermal decomposition of the precursors takes place in different stages. The significant weight loss regions as well as the stable phase formation region are also identified. In the present investigation, the first weight loss region in the temperature range of 22 - 212°C is 0.5 mg or 2.94% is due to the loss of adsorbed water. This effect is also identified by a sharp endothermic peak centered at around 83.5°C. The second stage of TGA curve shows weight loss of 1.5 mg or 8.81% between the temperature of 212 and 518.5°C. This loss is associated with the decomposition of the oxide precursors to form Zn₀.₈₅Mg₀.₁₅Fe₂O₄ compound. The decomposition reaction is depicted as a sharp endothermic peak in the DTA curve centered at 297°C. The

Figure 1: TGA/DTA curves of Zn₀.₈₅Mg₀.₁₅Fe₂O₄ ferrite material.
third weight loss observed in the temperature range of 518.5 and 1000 °C is 0.67 mg or 3.95%. This loss is associated with the decomposition of the remaining raw materials. At higher temperatures, the TGA curve becomes more flattened, indicating stable phase formation of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite material. In the DTA curve, the observed endothermic peaks are related to the weight loss stages in the TGA profile. So, they are characteristic of energy changes corresponding to different weight losses. Above 458°C, the gradual shift of the base line indicates that the solid-state reaction to form a pure phase Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite material.

3.2. XRD Study

The phase formation of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ powder sample was detected by using X-ray diffraction technique in the range of 2θ between 20° and 80° after the sample is calcined at 800°C for 12 hours. The obtained XRD pattern is shown in figure 2. As it is observed in the figure, the obtained diffraction patterns clearly show that all the peaks are sharp and well-defined, indicates that the synthesized sample possesses good degree of crystallinity. The XRD pattern of the sample also show considerable broadening of the peaks, which is indicates the particles of the synthesized samples are in nanometer range [26]. Moreover, the synthesized sample shows the characteristic peaks of ferrite material with most intense peak (311), which confirms the formation of cubic spinel structure. The peaks at 2θ values corresponding to 18.6°, 30.1°, 35.2°, 36.9°, 43.0°, 56.8°, 62.5° 70.8°, 73.8° and 77.5° can be indexed to (111), (220), (311), (222), (400), (511), (440), (620), (533) and (622) crystal planes respectively. This indicates the formation of spinel cubic structure with Fd3m space group, which is in accordance with the phases of ZnFe$_2$O$_4$ (JCPDS: PDF no. 74-2397, Fd-3m (227)). However, additional peaks are observed in these XRD patterns demonstrating the presence of other phase besides the Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite structure. These have been attributed to the following impurities Fe$_2$O$_3$ and FeO$_2$ in addition to ZnO and MgO.

The lattice parameter (a) of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite material was calculated by the least square fitting method from the d-spacing and the Miller indices, hkl using following relation;

\[a = d\sqrt{h^2 + k^2 + l^2} \]

(1)

The average crystallite size (D) of this sample was calculated using Scherrer’s formula [26];

\[D = \frac{0.9λ}{β\cosθ} \]

(2)

where \(λ \) is the X-ray wavelength, \(θ \) is the Bragg diffraction angle of (311) plane, and \(β \) is the full width half maxima (FWHM). The lattice constant and the crystal size of the sample was calculated by indexing the XRD patterns at (400) and X-ray peak broadening of the (311) peak, respectively.

The unite cell volume (V) of the synthesized sample was also calculated by;

\[V = a^3 \]

(3)

Figure-2: XRD pattern of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite material.

The obtained results are shown in Table 1. As it observed in the table the lattice parameter, the unite cell volume and the crystal size of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ are found to be 8.409 Å, 594.61 (Å)3 and 20 nm, respectively. The obtained crystallite size confirms the nano crystalline nature of the Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite material. On the other hand, the calculated lattice parameter of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite sample is slightly lower when compared with the pure ZnFe$_2$O$_4$ (8.443 Å) [27], which is associated with the ionic radius of Mg$^{2+}$ ion (0.65 Å) is lower than that of Zn$^{2+}$ ions (0.83 Å) [27]. The decrease in the unite cell volume of the sample is attributed to the increase in its lattice constant. Similar report has been made by Manikandan et al. [27].

3.3. FT-IR analysis

The FT-IR analysis study is an important method to get information about the positions of the ions in the crystal through the crystal’s vibrational modes. In the previous
studies it is reported that the formation of ZnFe$_2$O$_4$ ferrite can be identified by FT-IR spectra through the existence of characteristic vibrational bands of the tetrahedral (A) and octahedral (B) sites. The difference in positions of the bands for the various compositions of ferrite materials was expected because of the difference in the distances for the octahedral and tetrahedral ions. It is also reported that the vibrational spectra of ferrite materials attribute the band around 600 cm$^{-1}$ to the intrinsic vibrations of tetrahedral sites and around 400 cm$^{-1}$ to that of octahedral sites [28,29]. According to Patil [28], v_1 band corresponds to the stretching vibrations of Zn$^{2+}$O band in tetrahedral sites, while v_2 is assigned to Fe$^{3+}$O stretching of octahedral sites. This formation of bands verifies the formation of spinel ZnFe$_2$O$_4$ compound.

In this study, the FT-IR spectrum of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite sample is shown in figure 2. As observed in the figure, the FT-IR spectrum shows two distinct absorption bands which are responsible for the formation Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ compound. The higher frequency band (v_1) is located at 576.9 cm$^{-1}$ and the lower frequency band (v_2) is located at 425.2 cm$^{-1}$. The band with peak at 576.9 cm$^{-1}$ may be associated with the stretching vibration of the Zn(Mg)-O bonding force in Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite. Similarly, the band with peak at 425.2 cm$^{-1}$ may also be associated with the stretching vibration of the Fe-O bonding force in Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite. The difference in frequency bands v_1 and v_2 may be attributed to the changes in bond lengths between metal-oxygen ions within octahedral and tetrahedral sites. As compared with the bands of ZnFe$_2$O$_4$ compound reported by Konicki et al. [30], the absorption peak of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite is shifted slightly towards higher wavenumber region. This change in band position may be due to the substitution of Mg$^{2+}$ ions for Zn$^{2+}$ ions leading to the decrease in metal-oxygen separation. This is also in good agreement with the lower lattice parameter, unit cell volume and crystal size calculated from the XRD pattern.

The force constant for tetrahedral site (K_t) and octahedral site (K_o) were calculated using the relation [31]:

$$K_t = 7.62 \times M_1 \times v_1^2 \times 10^{-7} \text{ N/m} \quad (4)$$

$$K_o = 10.62 \times \frac{M_1 + M_2}{2} \times v_2^2 \times 10^{-7} \text{ N/m} \quad (5)$$

where M_1 and M_2 are the molecular weights of cations at tetrahedral and octahedral sites, respectively, and v_1 & v_2 are the frequency bands at tetrahedral and octahedral sites, respectively. The elastic force constants for tetrahedral site (K_t) of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ compound is found to be 1.5 x 104 dyne/cm. Further, the elastic force constants for octahedral site (K_o) of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ compound is found to be 0.77 x 104 dyne/cm. As compared both obtained results, the calculated values of K_t is larger than that of K_o. However, the tetrahedral bond length values of both ferrites are lower than those of octahedral site, which is associated with the shorter bond length of tetrahedral cluster and longer bond length of octahedral cluster [31].

3.4. ESR Spectroscopy Study

In electron spin resonance (ESR) study, the position of the ESR signal depend on the ratio of the magnetic field to magnetic field frequency and the effective gyromagnetic factor (g-factor). From the width and shape of the resonant
lines, it is possible to obtain detailed information about the magnetic nature of different materials. The ESR spectrum for Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite was recorded at a constant microwave frequency of 9450 MHz in the presence of a magnetic field of 650 mT. The effective g factor of the synthesized sample was evaluated using the relation [32];

\[g = \frac{h \nu}{\mu_B H_r} \]

(6)

where \(\nu \) is frequency of electromagnetic radiation, \(h \) is Planck's constant \((1.054 \times 10^{-34} \text{ J-s})\), \(\mu_B \) is Bohr magneton \((9.274 \times 10^{-24} \text{ J/T})\), and \(H_r \) is resonance field. The resonance line width \(\Delta H_{pp} \) is defined as peak-to-peak distance of the ESR signal. In this study, the room temperature ESR study of Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite which was prepared by solid state reaction method at calcination temperature of 800°C is shown in Figure 4. The calculated values of resonance field \(H_r \), peak to peak line width and Lande's g-factor are shown in Table 2.

![ESR spectra for Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite.](image)

As observed from the figure, the ESR spectrum of the synthesized sample shows a relatively broadened signal with line width \(\Delta H_{pp} \) 169.5 mT and 3.35 effective g values. Here, the obtained g value of the sample is relatively large. This may be a characteristic of isolated Fe$^{2+}$ ions predominantly situated in the Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ crystal lattice. This confirms the presence of Fe$^{2+}$ impurity. Different research studies reported that the ESR signal for ferrite materials generally originated from magnetic dipole interactions among particles and super exchange interactions between magnetic ions through oxygen ions [33]. The line width of ESR signal may get broadened or narrowed depending upon the interaction inside the ferrite material. Dominant dipole interactions give rise to broadened line width and large value of g-factor [34]. From the ESR spectroscopy investigation, wide line width and large g-values are obtained, which indicates that dipole interactions are dominant in Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite particles. From the ESR study small resonance peaks are observed in the range 385.7 mT to 484.9 mT. This may be associate with the presence of impurities in the prepared sample.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Peak to peak line width (mT)</th>
<th>Resonance field (mT)</th>
<th>g-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn${0.85}$Mg${0.15}$Fe$_2$O$_4$</td>
<td>169.5</td>
<td>209.4</td>
<td>3.35</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

Nanomagnetic Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ material was successively prepared by a solid-state reaction method using ZnO, MgO and Fe$_2$O$_3$ precursors. The thermal property, structural and magnetic properties of the synthesized material were investigated. It was found that the obtained nanomagnetic material possessed a spinel types cubic structure with Fd-3m space group. The FT-IR absorption bands within the frequency range supported the formation of the cubic structure in Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ compound. The XRD measurement showed that the lattice parameter as well as the crystal size of the synthesized nanocrystalline were found to be about 8.409 Å and 20 nm, respectively. These values were lower than those reported by other researchers for ZnFe$_2$O$_4$. From XRD study, the presence of additional impurities in synthesized sample was identified. These impurities caused a crucial role in the magnetic behavior of the sample. The room temperature ESR spectroscopy confirmed the dominance of the dipole interactions in Zn$_{0.85}$Mg$_{0.15}$Fe$_2$O$_4$ ferrite particles.

ACKNOWLEDGEMENT

The author is gratefully acknowledged to Dr. Paulos Taddesse for his support and guidance. The author also expresses his sincere thanks to Dr. Vijaya Babu for the FT-IR as well as ESR characterization and Adama Science and Technology University for XRD and TGA-DTA characterization.

REFERENCES

[1]. M.T. Rahman, M. Vargas, C.V. Ramana, Structural Characteristics, Electrical Conduction and Dielectric

