CFD ANALYSIS OF WIND TURBINE BLADE FOR LOW WIND SPEED

Siva Subramanian S

Department of Mechanical Engineering, Loyola ICAM College of Engineering and Technology, Tamil Nadu, INDIA

Abstract - The power generation problem is one of the important aspects of the world that has to address with high level of scientific reasoning and profound knowledge in the field of energy sources. Power can also be obtained from renewable resources, which include hydro power plants, solar power plants, solar thermal power plants and most importantly wind turbines. Hence harnessing and exploiting the energy comprised in the wind is important. Development of horizontal axis wind turbines (HAWTs) for small-scale application is important. A six bladed wind turbine system using the airfoils- Gottingen 364,384,428,480 and 682 were taken for the research. Using the design knowledge of on airfoils, key factors lift, drag and stall of the airfoil where studied and twist of the blade segments are designed with precision. Hence, the blades for a six bladed wind turbine system is designed for the optimal coefficient of lift value using Q-blade software with careful consideration at each location. Further, the aerodynamic parameters i.e. drag force, lift force, coefficient of drag, coefficient of lift and lift to drag ratio, pertaining to the wind turbine, the necessary calculations are formulated with the aid of Computational Fluid dynamics (CFD). Using the appropriate procedure of K-ε method to solve for the wind flow over the blade in an enclosed medium, the output parameters are calculated from the flow pattern in two functional form. By this method it is possible to reach the maximum amount of accuracy in carrying out the analysis and one can also obtain a very detailed output results. To check the aerodynamic design performance, the six bladed wind turbine system is validated using Numerical Study Computational Fluid Dynamics (CFD) using standard software’s(ANSYS-FLUENT) which forecast the performance of blades at low wind velocities. The parameters which are taken for analysis are carefully checked and correlated with IEC-61400 Standard of small wind turbine system. The average wind velocity at hub height 3m/s is taken as wind designed input and the proposed designed six bladed wind turbine for each airfoils is carried for analysis. A six bladed wind turbine system having Gottingen airfoils 364,384,428,480 and 682 respectively were studied.

Key Words- Gottingen, MRF, Mesh, Contour, K-ε.

1. INTRODUCTION

Wind Energy is the exercising of air flow through wind turbines to automatic power generators for electric power is a handy source of renewable energy. Wind power has been harnessed since before the Industrial Revolution in the form of windmills to thresh grains and for water pumping applications. The gradual and unceasing growth of this technology has led to the expansion of power generating massive wind turbines that we see these days. Wind Turbines largely, are huge in dimensions, noisy and require a wide space to function. This calls for installation of Wind Turbines in uninhabited rural areas, which are categorized by a robust flow of wind. Micro wind turbines can help to trim down high electricity costs and provide a cushion against ever increasing electricity demands. At remote locations in India, a micro wind turbine would be a practical and economical solution for the electricity complications, which might reduce our dependence on fossil fuels and circumvent greenhouse gases. Depending on the local wind resource and utility rates, a small wind energy system can minimize a customer’s electricity bill by 50% to 60%. It can be installed as a standalone system, eliminating the high cost of extending utility power lines to a remote location, or it can be connected to the power grid, enabling the customer to sell excess power to the grid or buy additional power when needed through a reverse metering system. Payback on capital investment is within the life span of the wind turbine. Given that a large portion of the Indian land will not be viable for the use of traditional windmills due to low wind speeds, efficient blades and a generator that would produce energy even at very low wind 2 speed are requisite. As the transmission losses in India are very high, placing the turbine near the place of power consumption could prove to be a feasible solution.

1.1 HISTORY OF AIRFOILS

That flat surfaces in the wind could produce the sideways force that we now call lift was a very ancient observation. Two early applications of it, the windmill and the fore-aft rigged sail, date back at least 800 years. It was also perfectly evident to any thinking person that what kept birds and bats aloft were the large flat surfaces attached to their arms. Neither the feathers of birds nor the fabric of sails and windmill blades had any thickness to speak of, and so the earliest lifting surfaces were just those surfaces. Thin surfaces restrained by a supporting structure naturally bellied out under air pressure, assuming what we now call a "cambered" -- that is, arched -- shape. The fact that camber was actually beneficial seems first to have been appreciated -- at least in writing -- by an English civil engineer of the 18th century, John Smeaton, who noted that curving the surfaces of their blades, improved the performance of windmills. For the next century and a half, nothing noteworthy occurred -- other than the invention of the modern airplane, in 1804, by another Englishman, George Cayley. Despite the random and ad
hoc quality of these early airfoil designs, efforts were being made to sort out the wheat from the chaff in wind tunnels. At first, unfortunately, investigators did not recognize the importance of scale. They tested very small models at very low speeds, and, because speed and size actually play important roles in the behavior of flowing air, their results supported the mistaken guess that thin airfoils were superior.

2. LITERATURE SURVEY

2.1. AERODYNAMICS OF WIND TURBINE

Wright & Wood et al (2004) observed and explained about starting a small horizontal axis wind turbine at low wind speed they studied behavior of blades could generate unexpected high torque. At the same time, the non-dimensional pitch rate and reduced frequency are too small to suggest a significant increase of the torque through the effects of unsteadiness. The torque subsequently decreased owing to inappropriate blade angles of attack, which lead to a substantial "idle time" at both high and low wind speeds, in which the rotating blades are accelerated only slowly and the angles of attack decreased slowly.

Sikandar Khan et al. (2012) had a work on the aerodynamic analysis and dynamic modelling of small horizontal axis wind turbine. This research work, mainly focus on dynamic analysis and Pitch control of horizontal axis wind turbine. Pitch control is one of the most useful and important control, present in all of the current wind turbine models. For dynamic analysis and pitch control, simulation techniques and experimental works were done side by side.

Habali (2000) et al gave an overview of the operation of wind turbines at low cut-in wind speeds and he able to find possible way through aerodynamic optimization of the rotor blades, which is the most important part of a wind turbine.

Chen (2011) et al made experimental study and he briefed about the Aerodynamic shape optimization, which is one of the main research fields that is directly related to power production of a wind turbine. The optimum distributions of the chord length and the pitch angle in each section can be acquired according to the design parameters, which include the rated wind speed, number of blades, design tip speed ratio and design angle of attack.

Arifujjaman et al (2008) modeled a small wind turbine with furling mechanism and investigated the model resulting in dynamics. He simulates by regulating the speed of the wind turbine via a load control method. Tip speed ratio and hill climbing control methods provides maximum power extraction from a small wind turbine. Small-scale wind 3 turbines installed within the built environment is classified as micro generation technology.

Ditkovich et al. (2014) had provided an overview on a method for estimating the fixed and variable speed turbine performance index. The approach is based on Weibull wind probability distribution function and manufacturer provided power curve.

Xu et al. (2013) gave a brief study on building and explained about miniature wind turbine which received great attention recently for powering low power devices with a physics based comprehensive model for predicting the performance of miniature horizontal axis wind turbine.

Dong Ok Yu & Oh Joon Kwon et al (2014) designed a small wind turbine generator system which can be mounted in coastal areas and islands slop with a good structures and a protective system for reliable operation. A small wind turbine prototype with high reliability is designed and examined in the real island conditions.

Johansen et al (2002) made a study on wind turbine blades and he investigated Flows near blade tip and hub numerically. He found the flow through an untwisted blade HAWT is quite complicated to solve numerically because of the rotation of the turbine, coupled with turbulence and stall effects, hence The rotating wind turbine can be modelled with static or dynamic grid method.

2.2. NUMERICAL STUDY ON BLADES

Douvi Eleni et al. (2012) made a study on the analysis of the two dimensional subsonic flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil at various angles of attack and operating at a Reynolds number of 3×10^6 and he explained the behavior of the study. The flow was obtained by solving the steady-state governing equations of continuity and momentum conservation combined with one of three turbulence models (Spalart-Allmaras, Realizable and shear stress transport (SST)). This aims to the validation of the models through the comparison of the predictions and the free field experimental measurements for the selected airfoil.
McKittrick et al (2001) gave a detailed report on analyzing the CFD techniques and it is found CFD methodology's can effectively predict the load characteristics of wind turbines and it is reasonable to employ pressure distributions obtained from CFD calculations as load conditions to This work highlighted two areas in computational fluid dynamics (CFD) which require for investigation transition point prediction and turbulence modelling. The laminar to turbulent transition point was modelled in order to get accurate results for the drag coefficient at various Reynolds numbers.

Karna Patel et al. (2014) made a brief study on CFD analysis of a airfoil and he provided information on relationship of drag, life and forces and it impact on airfoils. From the study, it is clear to find drag and lift forces using CFD methodology. The analysis of the two dimensional subsonic flow over a NACA 0012 airfoil at various angles of attack and operating at a Reynolds number of 3×E+06 is made and the CFD simulation results show close agreement with those of the experiments, thus suggesting a reliable alternative to experimental method in determining drag and lift. He also explained about the wind tunnel testing method to determine airfoil lift and drag forces where the process is quite laborious & costly more than CFD techniques. Thus validation of the research work has gone through analytical method then validation by experimental testing.

Kevin Cox & Andreas Echtermeyer et al (2012) gave an overview on the structural design and analysis of a 4 10MW wind turbine blade. The structural aspects of a 70+ meter-long blade in an upwind, horizontal-axis wind turbine were developed and built into use at high wind speed location. The structure of the blade was build using hybrid composites which have glass and carbon fiber plies for yielding a lightweight design with a low tip deflection. The blade was subjected to FEA studies to demonstrate its ability to withstand the extreme loading conditions as per the international offshore wind standard. The results confirmed the design to have acceptable performance with regard to tip deflection, maximum and minimum strains, and critical buckling load.

Wenlei Sun et al. (2010) gave an overview on the design and the research re-search difficulty in building a largescale wind turbine blades to work. Where the major drawbacks are in the work occupy in the blades designs because of three-dimensional blades model.

Chalothorn Thumthae & Tawit Chitsomboon et al (2006) recommended the importance of optimal angle of attack for untwisted blade in wind turbine. Hence the numerical simulation of horizontal axis wind turbines (HAWTs) with untwisted blade was performed to determine the optimal angle of attack that produces the highest power output. The numerical solution was carried out by solving conservation equations in a rotating reference frame wherein the blades and grids were fixed in relation to the rotating frame. Computational results of the 12° pitch compare favorably with the field experimental data of The National Renewable Laboratory (USA), for both inviscid and turbulent conditions. Numerical experiments were conducted by varying the pitch angles and the wind speeds. The power outputs reach maximum at pitch angles: 4.12°, 5.28°, 6.66° and 8.76° for the wind speeds 7.2, 8.0, 9.0 and 10.5 m/s, respectively. The optimal angles of attack were then obtained from the data.

Amano & Ryan Malloy et al (2013) explained about the improvement of blade aerodynamics and explore the possibility of increasing the number of profitable sites by optimizing wind turbine blade design for low wind speed areas.

Pedro Bañuelos-Sánchez et al. (2011) he gave a overview on low power-low cost horizontal axis wind turbine for 350Watt application. He describes a design and implementation of a low power Horizontal Axis Wind Turbine where the axis of rotation is parallel to the ground. Rotor, blades, supporting hub, and drive train are designed using computational software. Implemented wind turbine was tested and experimental results were obtained for 3.5 m/s to 9 m/s wind speed.

2.3. **SCOPE**

- The scope of the research work is to design a six
- bladed small horizontal axis wind turbine system - suitable for
- low speed wind condition, which would be an alternative
- The source for conventional large diameter wind turbine blades.

2.4. **OBJECTIVES**

The main objectives of this research is:

- To design a wind turbine which is cost effective and generates high power output.
- To design the blade, so as to have an extraordinary self-starting capacity at very low wind speeds.
• To model the blade of the turbine using different airfoils.
• To perform a steady state analysis using ANSYS 14.5 for the various blades modeled.
• To perform an analysis on different airfoil blades and decide on the most efficient one for the final blades.
• Fabricate the wind turbine and yoke the theoretical values with the test results.

3. AERODYNAMIC DESIGN OF WIND TURBINE

Rotor design, airfoil selection and Blade design constitute the aerodynamic design of the blade. Dynamic behavior, strength and fatigue properties of the rotor have to be taken into consideration when a wind turbine is being designed and constructed. The Rotor tip is designed with great attention and precision as the tip of the blade moves substantially faster than the root of the blade. To select the suitable wind turbine, three design speed parameters, namely cut-in wind speed $V_{cut\ in}$, rated wind speed V_{rated} and cut-out wind speed $V_{cut\ out}$ can be calculated by using equations.

$$v_{cut\ in} = 0.7\bar{u}$$

$$1.5\bar{u} \leq v_{rated} \leq 2.0\bar{u}$$

$$v_{cut\ out} \geq 3\bar{u}$$

Based on the average wind speeds in Tamil Nadu the rotor blades are to be designed. In this research, the annual average wind speed (\bar{u}) of Tamil Nadu is anticipated to be 3 m/s. The cut in speed is 1.4 m/s and the cut out speed is 9 m/s for the average wind speed taken. This average wind speed is the rated speed of the wind turbine.

4. AIRFOIL SELECTION

The main purpose of choosing this airfoil when compared to other airfoils is to generate maximum lift force by minimizing drag force. This airfoil produced efficient results for wind turbines for different domestic applications. Lift force for the airfoil is high which is highly suited for low wind speed turbines. A higher L/D ratio is also possible with non-symmetrical profiles. This airfoil is chosen because it satisfies many of the design criteria for optimal wind turbine rotor performance.

5. AIRFOIL DESIGN METHODOLOGY

The process of airfoil design proceeds from a knowledge of the boundary layer properties and the relation between geometry and pressure distribution. The goal of an airfoil design varies. Some airfoils are designed to produce low drag (and may not be required to generate lift at all.) Some sections may need to produce low drag while producing a given amount of lift. In some cases, the drag doesn’t really matter - it is maximum lift that is important. The section may be required to achieve this performance with a constraint on thickness, or pitching moment, or off-design performance, or other unusual constraints. The relative thickness of aerofoil changes in the span direction. For wing, shape Max. Relative thickness, it decreases from 40% of root to 10% of leaf apex, to gain Max. Wind energy utilizing coefficient. The methods for airfoil design can be classified into two categories: direct and inverse design.

5.1. DIRECT DESIGN METHOD

The direct airfoil design method involves with specification of respective airfoils which are geometry sections, Calculated pressure and performance. Using the above parameters or specifications of the airfoil, its later tends to evaluates the given shape and then modifies the shape to improve the performance. The two main sub problems in Direct method of airfoil analysis are

• The identification of the measure of Performance.
The simplest form of direct airfoil design involves starting with an assumed airfoil shape (such as a NACA airfoil), determining the characteristic of this section that is most problems some, and fixing this problem. The process involves fixing the most obvious problems with a given airfoil and it is repeated until no major problem with the section is able to found. The design of such airfoils does not require a specific definition of a scalar objective function, but it requires some expertise to identify the potential problems and often considerable expertise to fix them. Due to the complication and expertise involvement, the present research work for airfoil design uses inverse design of airfoils which is discussed below.

5.2. INVERSE DESIGN METHOD

Another type of objective function is the target pressure distribution. It is sometimes possible to specify a desired C_p distribution and use the least squares difference between the actual and target C_p's as the objective. This is the basic idea behind a variety of methods for inverse design. As an example, thin airfoil theory can be used to solve for the shape of the camber line that produces a specified pressure difference on an airfoil in potential flow. The second part of the design problem starts when one has somehow defined an objective for the airfoil design. This stage of the design involves changing the airfoil shape to improve the performance. This may be done in several ways:

By hand:

Using knowledge of the effects of geometry changes on C_p and C_p changes on performance.

By numerical optimization:

Using shape functions to represent the airfoil geometry and letting the computer decide on the sequence of modifications needed to improve the design. The airfoils used in this research are Gottingen airfoils which have non-dimensional linear chord length having profile thickness of unit length. Hence, the airfoils are then scaled to the chord length of the airfoil at each section. Different airfoils are noted and tested for the wind patterns and the airfoil most suited for the implementation of the wind turbine is selected.

6. GOTTINGEN PROFILES

6.1. GOTTINGEN 364 AIRFOIL

Gottingen 364 is proposed for analysis. It has Max thickness of 10.8% at 30% chord and Max camber of 6.5% at 30% chord. Table 3.2 represents the non-dimensional linear chord length and profile thickness of Gottingen 364. This profile is an asymmetric profile and profile thickness on either side of the mean line may vary based on the profile.
6.2. GOTTINGEN 384 AIRFOIL

Gottingen 384 is proposed for analysis. It has Max thickness of 19.6% at 29.3% chord and Max camber of 6.9% at 39.3% chord. Table represents the non-dimensional linear chord length and profile thickness of Gottingen 384. This profile is an asymmetric profile and profile thickness on either side of the mean line may vary based on the profile.
6.3. GOTTINGEN 428

Gottingen 428 is proposed for analysis. It has Max thickness of 7.9% at 30% chord and Max camber of 5.2% at 40% chord. Table represents the non-dimensional linear chord length and profile thickness of Gottingen 428. This profile is an asymmetric profile and profile thickness on either side of the mean line may vary based on the profile.

![Figure 6.5. Gottingen 428 airfoil](image)

![Table 6.1. Gottingen 428 non-dimensional linear chord length and profile thickness](table)

6.4. GOTTINGEN 682

Gottingen 682 is proposed for analysis. It has Max thickness of 10.7% at 30% chord and Max camber of 4.3% at 40% chord. Table represents the non-dimensional linear chord length and profile thickness of Gottingen 682. This profile is an asymmetric profile and profile thickness on either side of the mean line may vary based on the profile.

![Figure 6.6. Gottingen 428 non-dimensional linear chord length and profile thickness](image)
6.5. **GOTTINGEN 480**

Gottingen 480 is proposed for analysis. It has Max thickness of 11.8% at 30% chord and Max camber of 5.5% at 40% chord. Table represents the non-dimensional linear chord length and profile thickness of Gottingen 480. This profile is an asymmetric profile and profile thickness on either side of the mean line may vary based on the profile.
7. BLADE CONSTRUCTION

For the airfoils selected, the blade construction points are calculated at different sections in the airfoil based on the chord length at each section. The blade construction table for the various airfoils are calculated and tabulated.
<table>
<thead>
<tr>
<th>S.No</th>
<th>section 1</th>
<th>section 2</th>
<th>section 3</th>
<th>section 4</th>
<th>section 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R=281.01</td>
<td>R=663.4</td>
<td>R=994.01</td>
<td>R=993.62</td>
<td>R=1081.4</td>
</tr>
<tr>
<td>l=127</td>
<td>β=58.0^o</td>
<td>β=17.9^o</td>
<td>β=11.1^o</td>
<td>β=6.98^o</td>
<td>β=3.88^o</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>y1</td>
<td>x</td>
<td>y2</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1.224</td>
<td>0</td>
<td>0.396</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.15875</td>
<td>0.323</td>
<td>0</td>
<td>0.239728</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.3175</td>
<td>0.784</td>
<td>0.072</td>
<td>0.463762</td>
<td>0.375</td>
</tr>
<tr>
<td>4</td>
<td>0.655</td>
<td>0.512</td>
<td>0.054</td>
<td>0.931</td>
<td>0.224</td>
</tr>
<tr>
<td>5</td>
<td>0.952</td>
<td>1.284</td>
<td>0.792</td>
<td>1.7325</td>
<td>0.852</td>
</tr>
<tr>
<td>6</td>
<td>1.27</td>
<td>1.909</td>
<td>0.936</td>
<td>2.31</td>
<td>0.965</td>
</tr>
<tr>
<td>7</td>
<td>1.593</td>
<td>1.584</td>
<td>1.512</td>
<td>3.465</td>
<td>1.101</td>
</tr>
<tr>
<td>8</td>
<td>2.056</td>
<td>0.872</td>
<td>1.105</td>
<td>0.374</td>
<td>2.8704</td>
</tr>
<tr>
<td>9</td>
<td>2.448</td>
<td>0.933</td>
<td>1.17</td>
<td>0.561</td>
<td>1.088</td>
</tr>
<tr>
<td>10</td>
<td>2.58</td>
<td>1.742</td>
<td>1.21</td>
<td>0.744</td>
<td>0.092</td>
</tr>
<tr>
<td>11</td>
<td>2.92</td>
<td>1.984</td>
<td>1.115</td>
<td>0.913</td>
<td>0.152</td>
</tr>
<tr>
<td>12</td>
<td>3.205</td>
<td>2.232</td>
<td>1.366</td>
<td>1.122</td>
<td>0.089</td>
</tr>
<tr>
<td>13</td>
<td>3.57</td>
<td>2.592</td>
<td>1.115</td>
<td>1.509</td>
<td>0.152</td>
</tr>
<tr>
<td>14</td>
<td>3.94</td>
<td>2.664</td>
<td>1.21</td>
<td>0.744</td>
<td>0.092</td>
</tr>
<tr>
<td>15</td>
<td>4.205</td>
<td>2.979</td>
<td>0.872</td>
<td>0.561</td>
<td>1.088</td>
</tr>
<tr>
<td>16</td>
<td>4.57</td>
<td>3.288</td>
<td>2.1945</td>
<td>1.7766</td>
<td>0.092</td>
</tr>
<tr>
<td>17</td>
<td>4.94</td>
<td>0.144</td>
<td>0.1</td>
<td>0.107</td>
<td>0.064</td>
</tr>
</tbody>
</table>

Figure 7.1. Blade construction table Gottingen 364

<table>
<thead>
<tr>
<th>S.No</th>
<th>section 1</th>
<th>section 2</th>
<th>section 3</th>
<th>section 4</th>
<th>section 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R=281.01</td>
<td>R=663.4</td>
<td>R=994.01</td>
<td>R=993.62</td>
<td>R=1081.4</td>
</tr>
<tr>
<td>l=127</td>
<td>β=58.7^o</td>
<td>β=17.9^o</td>
<td>β=11.1^o</td>
<td>β=6.98^o</td>
<td>β=3.83^o</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>y1</td>
<td>x</td>
<td>y2</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5.975</td>
<td>0</td>
<td>4.415</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.15875</td>
<td>3.21</td>
<td>0</td>
<td>2.658</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.3175</td>
<td>1.888</td>
<td>0.072</td>
<td>0.463762</td>
<td>0.375</td>
</tr>
<tr>
<td>4</td>
<td>0.655</td>
<td>1.284</td>
<td>0.054</td>
<td>0.931</td>
<td>0.224</td>
</tr>
<tr>
<td>5</td>
<td>0.952</td>
<td>1.284</td>
<td>0.792</td>
<td>1.7325</td>
<td>0.852</td>
</tr>
<tr>
<td>6</td>
<td>1.27</td>
<td>1.909</td>
<td>0.936</td>
<td>2.31</td>
<td>0.965</td>
</tr>
<tr>
<td>7</td>
<td>1.593</td>
<td>1.584</td>
<td>1.512</td>
<td>3.465</td>
<td>1.101</td>
</tr>
<tr>
<td>8</td>
<td>2.056</td>
<td>0.872</td>
<td>1.105</td>
<td>0.374</td>
<td>2.8704</td>
</tr>
<tr>
<td>9</td>
<td>2.448</td>
<td>0.933</td>
<td>1.17</td>
<td>0.561</td>
<td>1.088</td>
</tr>
<tr>
<td>10</td>
<td>2.58</td>
<td>1.742</td>
<td>1.21</td>
<td>0.744</td>
<td>0.092</td>
</tr>
<tr>
<td>11</td>
<td>2.92</td>
<td>1.984</td>
<td>1.115</td>
<td>0.913</td>
<td>0.152</td>
</tr>
<tr>
<td>12</td>
<td>3.205</td>
<td>2.232</td>
<td>1.366</td>
<td>1.122</td>
<td>0.089</td>
</tr>
<tr>
<td>13</td>
<td>3.57</td>
<td>2.592</td>
<td>1.115</td>
<td>1.509</td>
<td>0.152</td>
</tr>
<tr>
<td>14</td>
<td>3.94</td>
<td>2.664</td>
<td>1.21</td>
<td>0.744</td>
<td>0.092</td>
</tr>
<tr>
<td>15</td>
<td>4.205</td>
<td>2.979</td>
<td>0.872</td>
<td>0.561</td>
<td>1.088</td>
</tr>
<tr>
<td>16</td>
<td>4.57</td>
<td>3.288</td>
<td>2.1945</td>
<td>1.7766</td>
<td>0.092</td>
</tr>
<tr>
<td>17</td>
<td>4.94</td>
<td>0.144</td>
<td>0.1</td>
<td>0.107</td>
<td>0.064</td>
</tr>
</tbody>
</table>

Figure 7.2. Blade construction table Gottingen 384
Figure 7.3. Blade construction table Gottingen 428

<table>
<thead>
<tr>
<th>Sno</th>
<th>section 1</th>
<th>section 2</th>
<th>section 3</th>
<th>section 4</th>
<th>section 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R=281.01</td>
<td>R=663.4</td>
<td>R=894.01</td>
<td>R=938.62</td>
<td>R=1081.4</td>
</tr>
<tr>
<td></td>
<td>ymax=12</td>
<td>ymax=10</td>
<td>ymax=8</td>
<td>ymax=5.5</td>
<td>ymax=3</td>
</tr>
<tr>
<td></td>
<td>l=127</td>
<td>l=231</td>
<td>l=187</td>
<td>l=150</td>
<td>l=130</td>
</tr>
<tr>
<td></td>
<td>(\beta=58.0^\circ)</td>
<td>(\beta=17.9^\circ)</td>
<td>(\beta=11.1^\circ)</td>
<td>(\beta=6.98^\circ)</td>
<td>(\beta=3.83^\circ)</td>
</tr>
<tr>
<td>1</td>
<td>0.155</td>
<td>0.125</td>
<td>0.1</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.1567</td>
<td>0.1287</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.217</td>
<td>0.189</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 7.4. Blade construction table Gottingen 480

<table>
<thead>
<tr>
<th>Sno</th>
<th>section 1</th>
<th>section 2</th>
<th>section 3</th>
<th>section 4</th>
<th>section 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R=281.01</td>
<td>R=663.4</td>
<td>R=894.01</td>
<td>R=938.62</td>
<td>R=1081.4</td>
</tr>
<tr>
<td></td>
<td>ymax=12</td>
<td>ymax=10</td>
<td>ymax=8</td>
<td>ymax=5.5</td>
<td>ymax=3</td>
</tr>
<tr>
<td></td>
<td>l=127</td>
<td>l=231</td>
<td>l=187</td>
<td>l=150</td>
<td>l=130</td>
</tr>
<tr>
<td></td>
<td>(\beta=58.0^\circ)</td>
<td>(\beta=17.9^\circ)</td>
<td>(\beta=11.1^\circ)</td>
<td>(\beta=6.98^\circ)</td>
<td>(\beta=3.83^\circ)</td>
</tr>
<tr>
<td>1</td>
<td>0.155</td>
<td>0.125</td>
<td>0.1</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.1567</td>
<td>0.1287</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.217</td>
<td>0.189</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0.235</td>
<td>0.199</td>
<td>0.125</td>
<td>0.125</td>
<td>0</td>
</tr>
</tbody>
</table>
8. NUMERICAL METHOD

8.1. NUMERICAL ANALYSIS

- The modeled blade is saved in the stp (STEP) format.
- This model is imported into ANSYS 14.5 work bench in the FLUENT solver.
- In the design modeler of the ANSYS the fluid domain is modelled with an inlet pipe, MRF zone and the outlet pipe.
- The blade is positioned in the MRF zone. This is then imported into the mesh module of the analysis software.
- A patch conforming mesh is done.
- The mesh is now imported to the fluent solver and the necessary boundary conditions are defined.
- The simulation is run till convergence of the answer.

The results obtained are plotted and compared with the theoretical results.

8.2. ANALYSIS PROCEDURE

- Building of blades
- For modelling the turbine, we first select the airfoil section. Based on the information from the blade construction table, the airfoil sections of various chord lengths are place at specific sections in the blade.
- The airfoil points are imported in to the modeler and a surface is created as shown in Figure 8.1 along the various airfoil sections as shown in Figure.

![Figure 8.1. Airfoil Import for Blade Construction](image-url)
8.3. **FLUID DOMAIN GENERATION**

- The modelled wind turbine is imported into the CFD commercial software (ANSYS-Workbench).
- The model is now imported into the geometry component of the solver as shown in Figure.
- Now open the design modeller and generate the geometry.
- Choose on which plane to add the geometry.
- After import a green tick should accompany the import file as shown in the image below.
- Now we create an enclosure around the turbine and name it the moving reference zone (MRF).
- The inlet pipe is now modelled from the MRF zone.
- The similar procedure is carried out for the outlet pipe.
- In order to increase the accuracy of the analysis the inlet and outlet pipes are sliced at some distance from the MRF frame so that the flow around the blade is consistent as displayed.
- Fully constructed wind turbine model is ready to be meshed.

- The model is saved and then updated into the mesh component as shown in Figure.
- Once the model is updated in the mesh, a patch conforming mesh as shown in Figure is done and a suitable body sizing is given. The mesh around the MRF zone should be finer compared to the rest of the fluid domain so that an accurate result can be obtained.

- The model is saved and then updated into the mesh component as shown in Figure. Once the model is updated in the mesh, a patch conforming mesh as shown in Figure is done and a suitable body sizing is given. The mesh around the MRF zone should be finer compared to the rest of the fluid domain so that an accurate result can be obtained.

- Fully constructed wind turbine model is ready to be meshed.
• The mesh is saved and the fluent setup is launched. Since the system we are using is a 4 core system, we input the number of parallel processes as 4 and choose the double precision method as shown in Figure.

• Once the model is loaded in the solver, a mesh check is done to ensure that the model is meshed properly. The scale of the model is also checked as displayed in Figure.

• Similarly, for all the wind turbine models which is designed with Gottingen airfoils the patch confirming mesh is provided and the details is given table below.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>GOE364</th>
<th>GOE384</th>
<th>GOE482</th>
<th>GOE480</th>
<th>GOE682</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESH TYPE</td>
<td>Triangular mesh</td>
<td>Triangular mesh</td>
<td>Triangular mesh</td>
<td>Triangular mesh</td>
<td>Triangular mesh</td>
</tr>
<tr>
<td>MESH COUNT</td>
<td>1500000</td>
<td>1500000</td>
<td>1500000</td>
<td>1500000</td>
<td>1500000</td>
</tr>
<tr>
<td>SKEWNESS</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

• The solver type is chosen to be pressure based and the time function as steady state.

• Due to lack of computational power we cannot do a transient state analysis due to the huge volume of data to be processed.

• The domain consists an inlet zone and outlet zone and MRF zone as shown in the above figure.

• For Inlet the velocity inlet is opted & for outlet pressure outlet is taken.

• The Realizable K-ε Model is chosen along with a standard wall function.

• The cell zone condition of the MRF is given a frame motion and made to rotate at -300 RPM (counter clockwise rotation).

• The analysis done here is an inverse analysis where the turbine is rotated at 300 RPM and the corresponding inlet velocity due to the suction created by it is recorded.

• Hence based on the airfoil profile used, the inlet velocity will vary.

• This can then be used to match the profile with the place.

• This will prove that the corresponding inlet velocity which is to be obtained only for that profile.

• The solution is initialized and the calculation is run till it converges.

• The procedure stated above is repeated for various blades and the converged solution is obtained.

• The results are then obtained from the CFD post processor.

9. NUMERICAL RESULTS

The computational results for the different airfoils for the given blade are discussed. The performance of the airfoils are also displayed in this chapter. After the solution is converged, the CFD post processing method is used to obtain the various results are shown in form of graph and contours. The various results obtained from the analysis are

• Coefficient of Lift
9.1. WIND TURBINE ROTOR GOE-364

Figure 9.1 GOE-364 CD vs \(\alpha \) (Angle of attack)
The above graph shown represents \(\text{CD} \) vs \(\alpha \) (Angle of attack) where maximum \(\text{CD} \) of the airfoil reaches at 15 Degree of angle of attack.

Figure 9.2. GOE 364 CL vs \(\alpha \) (Angle of attack)
The above graph shown represents \(\text{Cl} \) vs \(\alpha \) (Angle of attack) where maximum \(\text{Cl} \) of the airfoil reaches at 9 Degree of Angle of attack and \(\text{Cl} \) value is 1.3 respectively.

Figure 9.3. GOE 364 cl/cd vs \(\alpha \) (Angle of attack)
The above graph shown represents \(\text{cl/cd} \) vs \(\alpha \) (Angle of attack) where maximum \(\text{cl/cd} \) of the airfoil reaches at 9 Degree of Angle of attack and \(\text{cl/cd} \) value is 40 respectively.

9.1.1. CONTOURS OF STREAMLINE

The above graph shown represents \(\text{cl/cd} \) vs \(\alpha \) (Angle of attack) where maximum \(\text{cl/cd} \) of the airfoil reaches at 9 Degree of Angle of attack and \(\text{cl/cd} \) value is 40 respectively.

9.1.2. CONTOURS OF VELOCITY MAGNITUDE

The above explains the flow of the wind as it hits the blade. This flow varies every second and the streamlines of air passes through the wind turbine. We can see that the wind flow is concentrated towards the hub. As the turbine is rotating the air in front of it sucked in and pushed out. This will cause a pressure drop in front of the turbine. The blade angle is set in such a way that the starting torque is high. Owing to the rotation of the turbine at 300 RPM we get a velocity of 3.36 m/s in the inlet. Similar results can be obtained for the other blades with various airfoil sections.

9.1.3. PRESSURE CONTOURS

The above graph shown represents \(\text{cl/cd} \) vs \(\alpha \) (Angle of attack) where maximum \(\text{cl/cd} \) of the airfoil reaches at 9 Degree of Angle of attack and \(\text{cl/cd} \) value is 40 respectively.
Differential of the pressure distribution on blade surface which is obtained due to rotation effect, flow separation over the blade closer to the root of blade the stronger this effect will be.

Figure 9.7. Velocity vector of wind turbine blade-GOE 364 airfoil

9.2. WIND TURBINE ROTOR GOE-384

The above graph shown represents CD vs α (Angle of attack) where maximum CD of the airfoil reaches at 12.5 Degree of angle of attack.

Figure 9.8. GOE-384 CD vs α(Angle of attack)

The inlet velocity obtained from this airfoil is 3.13m/s from the figure we can clearly see that the velocity will be less as compared to the 364 airfoil from the streamlines that is obtained from the analysis. The streamlines are less dense compared to the 364 airfoil.

Figure 9.11. GOE 384 Streamlines

The inlet velocity obtained from this airfoil is 3.13m/s from the figure we can clearly see that the velocity will be less as compared to the 364 airfoil from the streamlines that is obtained from the analysis. The streamlines are less dense compared to the 364 airfoil.

9.2.2. CONTOUR OF VELOCITY MAGNITUDE

The above graph shown represents Cl vs α (Angle of attack) where maximum Cl of the airfoil reaches at 13 Degree of Angle of attack and Cl value is 0.54 respectively.

Figure 9.9 GOE 384 CL vs α (Angle of attack)

Figure 9.12 Velocity Contours- GOE 384
9.2.3. PRESSURE CONTOURS

Differential of the pressure distribution on blade surface which is obtained due to mainly from the three-dimensional rotation effect and flow separation on the blade and closer to the root of blade the stronger this effect will be.

9.2.4. VELOCITY VECTOR COLOURED BY VELOCITY MAGNITUDE

9.3. WIND TURBINE ROTOR SYSTEM GOE-428

The above graph shown represents CD vs α (Angle of attack) where maximum CD of the airfoil reaches at 16 Degree of angle of attack.

9.3.1. CONTOURS OF STREAMLINE

It is clearly visible from above figure that from the streamlines the inlet velocity should be higher than that of the 364 and 384 airfoils owing to the density of the streamlines in the inlet pipe. The velocity obtained here is 3.7 m/s.
9.3.2. CONTOURS OF VELOCITY MAGNITUDE

9.3.3. PRESSURE CONTOURS

Similar to the wind turbine rotor system of Gottingen airfoil, differential of the pressure distribution on blade surface which is obtained due to mainly from the three-dimensional rotation effect and flow separation on the blade and closer to the root of blade the stronger this effect will be. But minor changes can be viewed near the leading edge of the blade.

9.3.4. VELOCITY VECTOR COLOURED BY VELOCITY

9.4. WIND TURBINE ROTOR SYSTEM GOE-480

The above graph shown represents CD vs α (Angle of attack) where maximum CD of the airfoil reaches at 13 Degree of angle of attack.

The above graph shown represents Cl vs α (Angle of attack) where maximum Cl of the airfoil reaches at 12 Degree of Angle of attack and Cl value is 0.8 respectively.
The above graph shown represents cl/cd vs α (Angle of attack) where maximum cl/cd of the airfoil reaches at 5 Degree of Angle of attack and cl/cd value is 10 respectively.

9.4.1. CONTOURS OF STREAMLINE

The streamlines as shown in the above figure are like that of the 428 airfoil which gives a similar inlet velocity of 3.5m/s.

9.4.2. PRESSURE CONTOURS

Similar to the wind turbine rotor system of Gottingen airfoil. Differential of the pressure distribution on blade surface which is obtained due to mainly from the three-dimensional rotation effect and flow separation on the blade and closer to the root of blade the stronger this effect will be. But minor changes can be viewed near the leading edge of the blade.

9.4.3. VELOCITY VECTOR COLOURED BY VELOCITY MAGNITUDE

The above graph shown represents CD vs α (Angle of attack) where maximum CD of the airfoil reaches at 13 Degree of angle of attack.

9.5. WIND TURBINE ROTOR SYSTEM GOE-682

The above graph shown represents CD vs α (Angle of attack) where maximum CD of the airfoil reaches at 13 Degree of angle of attack.
The above graph shown represents C_l vs α (Angle of attack) where maximum C_l of the airfoil reaches at 9 and at 13 Degree of Angle of attack and C_l value is 1.3 respectively.

The above graph shown represents c_l/c_d vs α (Angle of attack) where maximum c_l/c_d of the airfoil reaches at 4.7 Degree of Angle of attack and c_l/c_d value is 10 respectively.

9.5.1. CONTOURS OF STREAMLINE

The 682 airfoil streamlines are much different from the other airfoils. From the above figure, we can see that the effect of the wind turbine blade is near the vicinity of the blade which indicates that the inlet velocity of the blade is low. The inlet velocity obtained here is 2.8 m/s.

9.5.2. CONTOURS OF VELOCITY MAGNITUDE

As the result the velocity magnitude has a maximum value at the tip of the blades and is practically zero at the centre of the hub. The very fact is that all the blade tips show maximum velocity and this ensures that the turbine’s axis passes through the center of the hub and is aligned properly without disturbing the orientation of the turbine. This investigation also concludes that the turbine is rotating in the anti-clockwise direction. Analysis on contour of pressure reveals that the pressure is exerted on the wind turbine blades by the incoming air.
As seen in the pressure contour on the blade surface, the visualization shows that the darker region is where the pressure is high and that it is rotating in the anti-clockwise direction. These pressure plots do not affect the computational power output adversely because they occur at the inner blade span, which contributes little to the torque in the blades. The velocity magnitude figure reveals the path of the wind when it hits the blades and passes through the turbine at a steady state. The path of the wind would vary at every second for a transient state analysis.

Figure 9.34 Distribution of contours of pressure over the blade

The streamlines tell us about the path of the wind as it hits the blade. This path varies every second. The streamlines of air pass through the wind turbine. We can see that the wind flow is concentrated towards the hub. As the turbine is rotating, the air in front of it is sucked in and pushed out. This will cause a pressure drop in front of the turbine. The blade angle is set in such a way that the starting torque is high. The streamline of air passes through the turbine blades as shown in Figure. The numerical solution, for the velocity at rated power is close to the experimental values. The high blade angle at the root provides high starting torque for the low wind speeds. From the streamline investigation, it is clear that the wind speed averages around 3.4 m/s. After the solution is converged, the CFD post processing is run to obtain the various results.

Figure 9.35 Velocity Streamline of the rotating blade

10. CONCLUSION

Under typical design conditions, the rated power of 1kW was obtained by vigilant experimentation and was adequately validated with the investigations on CFD. The test results indicate that the blades were sufficiently efficient and it complied with the design considerations of the turbine. The wind tunnel tests were useful to select the blade angles by indicating the ratio of lift to drag coefficients at different sections along the length of the blade. The blade design and the performance of these blades in low wind speed conditions were observed at 300 rpm and simulation results ensure optimum power output at 3.4 m/s. It was witnessed and demonstrated that the blades were designed efficiently and the rated power output was obtained at a very low wind speed of 4.4 m/s.

REFERENCES

20. Chen Anthony, A 1999, 'Report on a project: Large Scale Wind Generation of Electricity by Wind Turbines at Munro College', Submitted to Environmental Foundation of Jamaica by Project Director, Department of Physics, University of the West Indies.

64. Larsen, TJ & Hansen, AM 2007, ‘How 2 HAWC2, the user’s manual’, Ris National Laboratory.

