DESIGN OF RACK AND PINION STEERING FOR ALL TERRAIN VEHICLE

Ajay M. Tayde¹, Sanket P. Golhar², Shital R. Ughade³, Nikita Ramdas Kakde⁴

¹,²,³,⁴Student, Department of Mechanical Engineering, PRMIT&R, Badnera, Amravati University, Maharashtra (INDIA)

Abstract: Aim is to design a Rack and Pinion Gearbox (RPG) which has desired steering ratio, zero play in the Rack and pinion gear box and sensitive steering. Rack and pinion steering systems are commonly used due to their simplicity in construction and compactness. Main purpose of this paper is to design the rack and pinion steering system. In this paper analyzed the two components of the steering system. In order to calculate the stresses, safety factor, no of teeth on rack and pinion. Improve the performance of steering system.

Key words: Rack and pinion, teeth, addendum, Dedendum, pitch circle

1. Introduction

The function of the steering system is to provide directional control to the vehicle. For this a gearbox is used which converts rotational motion of steering wheel into translational motion of tie rod which in turn rotates the tires. There are different types of gear box but mostly in All Terrain Vehicle (ATV) the rack and pinion gearbox.

Above fig. shows the Rack and pinion steering is a simple system that directly converts the rotation of the steering wheel to straight line movement at the wheels. The steering gear consists of the rack, pinion, and related housings and support bearings. Turning the steering wheel causes the pinion to rotate.

1.1 Requirements of steering system

1) Provide the proper turning to vehicle on sharp edges of track.
2) Require minimum effort to turn the vehicle.
3) Design in such a way that minimum shock will be acts on driver.
4) Loss of steering wheel control should not occur.
5) Steering system recovery should be smoothly, after removing the forces by drive it should come at straight position smoothly.

2. Steering Geometry

Table-1: Steering Design Consideration:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel Base</td>
<td>55in or 1397mm</td>
</tr>
<tr>
<td>Track Width</td>
<td>51in or 1295mm</td>
</tr>
<tr>
<td>Castor Angle</td>
<td>4°</td>
</tr>
<tr>
<td>Inner Locking Angle</td>
<td>46°</td>
</tr>
</tbody>
</table>
Material used: Al T6 7075
Mostly in ATV the rack and pinion steering is made up of Al T6 7075 which having and desired physical properties.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>2810 kg/m³</td>
</tr>
<tr>
<td>Hardness</td>
<td>BHN = 150</td>
</tr>
<tr>
<td>Ultimate Tensile Strength</td>
<td>541 MPa</td>
</tr>
<tr>
<td>Yield Strength</td>
<td>468 GPa</td>
</tr>
<tr>
<td>Modulus of Elasticity</td>
<td>71.7 GPa</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table-2: Physical Properties

Generally the modulus is given by the manufacturers hence considering the modulus as 2.5

3. For calculating the Turning Radius

For Perfect Ackerman
\[
\cot(\text{outer angle}) - \cot(\text{inner angle}) = \frac{\text{Track width}}{\text{Wheel base}}
\]
\[
\cot \alpha = \frac{b}{r}
\]
\[
\cot \alpha = \frac{1295}{1397} + \cot (46)
\]

Therefore \(\alpha = 27.84^\circ \)

Inside Turning Radius \(R_i = \frac{1}{\sin \beta} \)
\[
= \frac{1397}{\sin(46)} = 1942 \text{mm}
\]

Outside Turning Radius \(R_o = \frac{1}{\sin \alpha} \)
\[
= \frac{1397}{\sin(27.84)} = 2291 \text{mm}
\]

Turning Radius = \(\frac{1942 + 2291}{2} = 2116 \text{mm} = 2.116 \text{m} \)

Table-3: Gear Considering Parameters

4. Minimum Number of Teeth on Pinion

Minimum number of teeth on pinion is obtained by using following relation.

\[
T_p = \frac{(2+\text{Addendum})}{\text{module}\times\sin^2(\text{Pressure angle})} = \frac{2+m}{m\times\sin^2(20)} = 17
\]

5. Design of gear pair

It is necessary to design rack and pinion such a way that it must provide required torque for turning the vehicle.

5.1 Beam Strength

Beam strength of gear tooth is the maximum tangential load that gear tooth can take without tooth damage.

Assumptions:

1) The full load is acting at the tip of a single tooth.
2) The effect of radial force is neglected.
3) The load is uniformly distributed across the full face width.
4) Effect of stress concentration is neglected.
5) Frictional force due to teeth sliding are neglected.

5.2 Calculations

5.2.1 Bending endurance strength of pinion (\(\sigma_{bp} \)):

Beam strength of gear tooth is the maximum tangential load that gear tooth can take without tooth damages.

\[
\sigma_{bp} = \frac{\text{Ultimate tensile strength}}{3} = \frac{541}{3} = 180.33 \text{MPa}
\]

5.2.2 Bending endurance strength of gear (\(\sigma_{br} \)):

\[
\sigma_{br} = \frac{\text{Ultimate tensile strength}}{3} = \frac{541}{3} = 180.33 \text{MPa}
\]

5.2.3 Lewis form factor (Y):

1) \(Y_p = 0.484 - \frac{2.87}{\text{Teeth on pinion}} = 0.484 - \frac{2.87}{17} = 0.311 \)

2) \(Y_r = 0.484 - \frac{2.87}{\text{Teeth on rack}} = 0.484 - \frac{2.87}{27} = 0.377 \)

\[
\sigma_{bp}\cdot Y_p = 180.33\cdot 0.311 = 56.08
\]

\[
\sigma_{br}\cdot Y_r = 180.33\cdot 0.377 = 67.98
\]

\[
\sigma_{bp}\cdot Y_p < \sigma_{br}\cdot Y_r
\]

Pinion is weaker then rack in bending. Hence it is necessary to design the pinion for bending.

Assuming \(b = 10^m \),

The beam strength is given by,

\[
P_b = \sigma_{bp} \cdot b \cdot m \cdot Y_p
\]
Pb = 180.33 * 10 * m * m * 0.311
Pb = 560.82 m² N

5.2.4 Wear strength

The failure of the gear tooth due to pitting occurs when the contact stresses between two meshing teeth exceed the surface endurance strength of the material.

Buckingham’s theory is based on hertz theory of contact stresses. From his theory we can conclude that Wear strength of a gear tooth is the maximum tangential load the gear tooth can take without causing a pitting failure.

\[P_w = b^*Q^*d_p^*k \]
\[P_w = b^*Q^*m^*T_p^*k \]

Q = Ratio factor for external gear pair = \[\frac{2*T_g}{T_g + T_p} \]
d_p = Diameter of pinion = m * T_p

Here T_g = 29, T_p = 17
So that Q = 1.260

\[k = \frac{\alpha + \cos \phi \sin \phi}{1.4} \left(\frac{1}{E_1} + \frac{1}{E_2} \right) \]
\[k = \left(\frac{(0.27)* (9.81)* (BHN)}{2*\cos(20) \sin(20)} \right)^{1.4} \]
\[k = \left(\frac{(0.27)* (9.81)* (150)}{2*\cos(20) \sin(20)} \right)^{1.4} \]

k = 1.010

\[P_w = 10^*m^*1.260^*m^*17^*1.010 \]

P_w = 216.342 m² N

5.2.5 Steering Torque

Considering the total weight of the vehicle with the driver to be 140+60=200kgs and considering 45:55 weight distribution,

Assuming friction force to be maximum, so \(\mu = 0.95 \),

\[F_r = \mu^*N \]
\[F_r = 0.95^*882.9 \]

\[F_r = 838.75N \]

6. Conclusion

The objective of designing the effective steering system with high safety and low production costs seems to be accomplished. The design is first conceptualized based on personal experiences and intuition. Engineering principles and measurement and calculations are then used for its designing.

7. Acknowledgment:

The design process is not a single handed effort but a team effort. We would also like to express our gratitude towards the Mechanical department and on the whole towards the college for the support. The team would also like to recognize the valuable assistance of the project guide, Prof. A.S. Sakhare Sir, Mechanical Engineering Department, PRMIT&R.

8. References

i) Thomas D. Gillespie, Fundamentals of vehicle dynamics, Society of Automotive Engineers, Inc. 400 commonwealth drive, Warrandale, PA 15096-0001

ii) William F. Milliken and Douglas L. Milliken, Race Car Vehicle Dynamics, Society of Automotive Engineers, Inc. 400 commonwealth drive, Warrandale, PA 15096-0001

iii) Design and Manufacturing of an effective steering system for ATV and performance enhancement.

iv) Designing of the rack and pinion gearbox for all terrain vehicles for the competition BAJA SAE INDIA.

9. Biographies

Ajay Manikrao Tayde
He now pursuing bachelor of mechanical engineering in final year at Prof. Ram Meghe Institute of Technology and Research, Badnera Amravati.

Sanket Pandit Golhar
He now pursuing bachelor of mechanical engineering in final year at Prof. Ram Meghe Institute of Technology and Research, Badnera Amravati.

Shital Ravindra Ughade
He now pursuing bachelor of mechanical engineering in final year at Prof. Ram Meghe Institute of Technology and Research, Badnera Amravati.
Nikita Ramdas Kakde
He now pursuing bachelor of mechanical engineering in final year at Prof. Ram Meghe Institute of Technology and Research, Badnera Amravati.