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Abstract - In this article some results about GCD are discussed 
and we derive a formula for smallest number of identical 
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1. INTRODUCTION   

ℕ = {1,2,3,…}, ℤ = {0, 1, 2, 3,…} are sets of 
natural numbers and integers respectively. A nonzero 

integer b is a divisor (factor) of ∈ℤ if =kb for some k ∈ ℤ 

and in this case we write b|  and in this case |b|≤| | if ≠0. 

Divides ‘|’ is areflexive, transitive relation on a set of nonzero 
integers and it is partial order on ℕ. 

 For integers , b (not both zero); d ∈ ℕ is called a 

greatest common divisor (GCD) of , b denoted by ( ,b) or 

GCD ( ,b) if 

i) d| , d|b and 

ii) for any integer e with e|  and e|b ⇒e|d 

If ( ,b) = 1 then  and b are called relatively prime 

(coprimes). 

For integers , b, c (not all zero); d ∈ ℕ is called a 

GCD of , b, c denoted by ( ,b,c) if 

i) d| , d|b, d|c and 

ii) For e ∈ ℤ; e| , e|b and e|c ⇒ e|d. 

Similarly we define GCD of four or more integers. 

For non-zero integers ,b; ℓ∈ℕ is a least common 

multiple (LCM) of , b and denoted by [ ,b] if 

i) | ℓ, b|ℓ and 

ii) |m and b|m for m ∈ ℤ ⇒ ℓ|m 

Similarly we define LCM of three or more nonzero 
integers. 

Note that ( ,b) = (b, ) = (| |, |b|), [ ,b] = [b, ] = 

[| |,|b|]. 

1.1 Euclid’s Lemma: 

For (≠0), b, c ∈ ℤ; |bc and ( ,b) = 1 

⇒ |c. 

1.2 If , b are non-zero integers and d, k ∈ ℕ 

then  

(k , kb) = k( , b) and ( ,b) = d iff ( =1. 

1.3 If , b, c ∈ ℤ and ( ,b) = ( ,c) = 1 then 

( ,bc) = 1. 

 

1.4 Let , b ∈ ℕ and d=( ,b). Then 

i) There exist p, q ∈ ℕ with  = pd, b 

= qd and (p,q) = 1; 

ii) ℓ = pqd = [ ,b] and 

iii) b = ℓd 

1.5 [1] For any nonzero integers , b, h, k;( h, bk) = 

( , b) (h, k) ( ,  ) ( , ) 

                     In particular ( h, bk) = ( , k) (b, h) if ( , b) = (h, 

k) = 1. 

Proof: 

Let d = ( , b), f = (k, h). Then there exist p, q, r, s ∈ ℤ with  = 

pd, b = qd, h= rf, k = sf and (p, q) = (r, s) = 1. 

Hence ( h, bk) = (prdf, qsdf) = df (pr, qs). -(*) 

Let α = (p, s), β = (q, r). Then ∃ p1, s1, q1, r1 ∈ℤ such that  

p = p1α, s = s1α, q = q1α, r = r1α and (p1, s1) = (q1, r1) = 1. 

∴(pr, qs) = (p1r1 αβ, q1s1αβ) = αβ(p1r1 , q1s1) = αβ, -(**) 

since (p1, q1) = (r1, s1) = q as (p, q) = (r, s) = 1 and p1|p,  q1|q,  
r1|r, s1|s. 
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Now (r1, q1) = (p1, s1) = 1 gives (p1r1, q1) = 1 = (p1r1, s1) and 
hence (p1r1, q1s1) = 1 and (**) follows. Using (**) in (*), we 

get ( h, hk) = df αβ = ( , b)(h, k)(p, s)(q, r) 

= ( , b)(h, 

k)( , )( , ) 

as p =  =  , s =  =  etc. 

For more details and proofs of above results, one may refer 
[2], [3] or any standard book on Elementary Number Theory. 

2. Application 1 

Now we derive a formula for requiring least number 
of identical rectangular tiles which need to pave a 
square floor without breaking any tile. 

2.1 Proposition: 

               If , b ∈ℕ and there are rectangular tiles of size 

b (sq. units) then to form a square of smallest 

size by fitting these tiles requires  tiles, where d = 

( ,b). Moreover for any  

k ∈ N, fitting  tiles we form a square. 

Proof: 

Let d = ( ,b) where , b ∈ℕ. Then  Now 

form a row of   tiles, where each tile is of length  and width 

b. 

 

 tiles in this row.) 

This row forms a rectangle of size  

Consider  such rows. Thus we have  

tiles forming   rows and    columns, forming a 

rectangular floor and each side of this rectangle is 

 = , i.e. the rectangle is a square of side  

unit and number of tiles in this square floor is  

=  =  by 1.4. 

[Area of the square = ( )2 =  = (Area of a 

tile).(number of tiles)]. 

Let X be any square formed by tiles. Let t, s 
be number of tiles in row and column respectively 
in the square X, i.e.  X is formed by these tiles. 

Now four sides of X are equal gives t = bs 

⇒  = and hence |  ,  |  

⇒ |s and  since ( ) = 1 (by 1.1) 

⇒  ≤  s and ≤ t, i.e. ≤ st = Number of tiles in X. 

This proves that the smallest square is formed with 

 tiles.                                            

 Note that such 4 squares, 9 squares, form squares. 

Illustration 1: The smallest square floor which can 
be completely paved with tiles of size 8x6, without 
breaking any tile needs 

 =  = 12 tiles. 

 

3. Relation between LCM and GCD of three numbers. 

For any non-zero integers , b, c and k, d ∈ N, we 

have 

( , b, c) = (b, c, ) = (c, , b) = ( , c, b) = (| |, |b|, 

|c|), 

[ , b, c] = [b, c, ] = [c, , b] = [ , c, b] = [| |, |b|, |c|], 
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(k , kb, kc) = k( , b, c), [k , kb, kc] = k[ , b, c] and  

( , b, c) = d iff ( , ) = 1 

3.1 Theorem: Let , b, c ∈ℕ and d = ( , b, c), d1 = ( , ), d2 = 

( , ), d3 = ( , ). Then 

i) There exist , b, c ∈ℕ such that  

= dd1d3 1, 

b = dd1d2b1, c = dd2d3c1; 
ii) (d1,d2) = (d2,d3) = (d1,d3) = 1 

iii) ( 1,d2) = (b1,d3) = (c1,d1) = 1 

iv) ( 1,b1) = (b1,c1) = ( 1,c1) = 1 

v) [ , b, c] = dd1d2d3 1b1c1 is the LCM 

of , b, c. 

vi) bc = [ , b, c]( , b, c)2 

( ,b)(b,c)( ,c). 

Proof: Let , b, c ∈ℕ, d = ( , b, c), d1 = ( , ), d2 = ( , ), d3 = 

( , ). 

ii) Let h = (d1, d2). Then h|d1, h|d2 (d1| , d1| , d2|  it 

gives 

h| , h| , h|  and hence h divides ( , , ) = 1, 

i.e. h = 1 = (d1, d2). Similarly (d2, d3) = (d1, d3) = 1. 

i) Now d1| , d3| , and (d1, d3) = 1 ⇒ d1d3|  by 1.3. 

Hence there exists 1∈ℕ such that  = d1d3 1 

i.e.  = dd1d3 1. Similarly there exist b1, c1∈ N 

such that b = dd1d2b1, c = dd2d3c1. 

 iii) Let g = ( 1, d2). Then g| g| , g|  as 1|  and d2 

= ( , ). 

⇒g divides ( , , ) = 1, i.e. ( 1, d2) = g = 1. 

Similarly (b1, d3) = (c1, d1) = 1. 

iv) Let f = ( 1, b1). Then f| , f|  by (i) 

⇒ f divides ( , ) = 1, since d1 = ( , ). 

i.e. ( 1, b1) = f = 1. Similarly (b1, c1) = ( 1, c1) = 1. 

 v) ℓ = dd1d2d3 1b1c1∈ℕ and ℓ = d2b1c1 = bd3 1c1 = 

cd1 1b1 by (i) 

⇒ |ℓ, b|ℓ and c|ℓ. 

Let m∈ℤ be such that |m, b|m, c|m. Then by (i), 

d1d3 1| , d1d2b1| , d2d3c1| . 

Now, (d1, c1) = 1 = (d1, d2d3) by (ii) and (iii) ⇒ (d1, 
d2d3c1) = 1. 

               ⇒ d1d2d3c1|  as d1|  and d2d3c1|  

              Similarly d1d2d3 1| , d1d2d3b1| . 

              Thus 1| ,b1|  c1| . 

              As ( 1, c1) = (b1, c1) = 1 = ( 1, b1) ⇒ ( 1b1, c1) = 1, so 

from 

              above we have 1b1c1|  i.e. dd1d2d3 1b1c1|m. 

              i.e. ℓ = dd1d2d3 1b1c1 divides m. 

              Hence ℓ = dd1d2d3 1b1c1 = [ , b, c] is the LCM of , b, 

c. 

iii) By 

(i), bc = d3(d1d2d3)2
1b1c1 

 = [ , b, c]d2d1d2d3 by (v) 

 = [ , b, c] ( , b, c)2( , b)(b, 

c)( , c).  

3.2 Corollary: If , b, c ∈ℕ and d = ( , b, c) such that  = 

d 1, 

b = db1, c = dc1 and ( 1, b1) = (b1, c1) = ( 1, c1) = 1 

then 

bc = [ , b, c]( , b, c)2. 

Proof follows from theorem 3.1, since here d1= d2= d3 = 1. 

 Cuboid of size xbxc is a solid rectangular parallelepiped of 

length , width b and height c. (units). 
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3.3 Proposition: 

If , b, c ∈ℕ and there are cuboids of same size 

xbxc (cubic units), then using  cuboids we can 

form a solid cube. Moreover for any k ∈ℕ, using  

cuboids, we can form a solid cube, where d = ( , b, c), 

d1 = ( ), d2 = ( ), d3 = ( ). 

Proof: Let , b, c ∈ℕ;  = dd1d3 1, b = dd1d2b1, c = dd2d3c1 

Where d = ( , b, c), d1 = ( ), d2 = ( ), d3 = ( )  

and 1, b1, c1∈ℕ. 

     

b   

c                                                        ⋮⋮⋮⋮                                                                        

 

 
   

cuboids in the 

row. 

Consider cuboids as tiles of sizes xb with thickness (height) 

c.  

Now we form a square floor with  columns and 

 rows of tiles. 

[Note that , , ∈ ℕ.] 

Thus we have a cuboid with square base of side  

and height c. 

Now consider such  cuboids (with square base) and 

installing them we get a solid cube of edge . 

For this forming the solid cube we require 

 =  cuboids.  

Remark: 

 In proposition 3.2, if (d2, c1) = (d3, c1) = (d1, b1) = 1. 

Then number of cuboids required to form smallest cube is 

. 

Let X be a cube formed from cuboids each of size xbxc. Let 

r, s, t be a number of cuboids along the sides of the cube X. As 
each edge of X is same, we have 

 r = bs = ct, i.e. d1d3 1r = 1s = d2d3 c1t 

⇒ d3 1r = d2b1s, d1 1r = d2c1t 

Now d2b1|d3 1r with (d2, d3) = (d2, 1) = 1, so (d2, d3 1) = 1, 

(b1, 1) = 1 = (b1, d3) = 1, so (b1, d3 1) = 1 (See theorem 3.1) 

and hence (d2b1, d3 1) = 1, which gives by 1.1, d2b1|r. 

Also we have c1|d1 1r and (c1, d1) = (c1, 1) = 1, 

i.e. (c1, d1 1) = 1, so again by 1.1, c1|r. 

d2b1|r, c1|r and (b1, c1) = 1, (d2, c1) = 1 i.e. (d2b1, c1) = 1 

gives d2b1c1|r (by 1.1). Now  = d2b1c1 divides r. 

Thus ≤ r.  

Using (d3, c1) = (d1, b1) = 1, we get 

 = d3a1c1 ≤ s,  = d1a1b1 ≤ t. 

Hence ≤ rst = Number of cuboids in X. 

This proves that the smallest cube is formed with  

cuboids. 

If d1=d2=d3=1 then  =  

3.4 Corollary [Application 2] 

Let , b, c ∈ℕ, d = ( , b, c), d1 = ( , ), d2 = ( , ), d3 = ( , ) and 

 = dd1d3 1, b = dd1d2b1, 

c = dd2d3c1. If one of the following holds: 

(d1, 1) = 1, (d1, b1) = 1, (d2, b1) = 1, (d2, c1) = 1, (d3, 1) = 1, 

(d3, c1) = 1  
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then using  cuboids, each of size  x b x c (cubic 

units), we can form the smallest cube without breaking any 
cuboid. 

Hint: In the above remark, for (d2, c1) = 1, we have ≤ 

r, i.e., ≤ r 

⇒ ≤  = Volume of the cube X 

From this corollary 3.4 follows. 

Illustration 2: Determination of the number of cuboids, each 
of size 100x210x375 (cubic units) to form the smallest solid 
cube without breaking any cube. 

 For  = 100 = 5 2  5 2, b = 210 = 

5 2 3 7, c = 375 = 5 3 5 5 ∈ℕ. 

We have d = ( , b, c) = 5, d1 = ( , ) = 2, d2 = ( , ) = 3, 

d3 = ( , ) = 5, 1 = 2, b1 = 7, c1 = 5, with d1, d2, d3 are 

pairwise relatively prime and 1, b1, c1 pairwise 

relatively prime with ( 1, d2) = (b1, d3) = (c1, d1) = 1 

(verifies theorem 3.1). 

Note that (d1, a1) = 2, (d1, b1) = 1 = (d2, b1) = (d2, c1) 

= (d3, 1) = 1 and (d3, c1) = 5. 

So by corollary 3.4; to form smallest cube from 

cuboids, each of size a b c (cubic units) without 

breaking any cuboid requires number of cuboids  

  =  =  = 147000. 

3.5 Corollary. Let , b, c ∈ ℕ, d = ( , b, c) and a = d 1, b=dc1, 

c=dc1 with 

 ( 1, b1) = (b1, c1) = ( 1, c1) = 1. 

Using  cuboids, each of size xbxc, we can form 

smallest solid cube. For any k ∈ℕ, using  

such cuboids we form a solid cube. 

Illustration 3: To form smallest cube from cuboids each of 

size 10 6 4, we require 

 =  (5 3 2)2 = 900. 

 

CONCLUSION: 

 Using proposition 3.1 and corollary 3.4, we can solve 
problems of constructing a square floor or a cube from 
identical tiles (cuboids) 
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