On Greatest Common Divisor and its Application for a Geometrical Structure

A.K. Mule ${ }^{1}$, J.N. Salunke ${ }^{2}$
${ }^{1}$ Department of Mathematics MGM College Ahmedpur, Tq. Ahmedpur Dist. Latur, Maharashtra, India ${ }^{2}$ Former Director School of Mathematical Sciences SRTMU Nanded at Post Khadgaon, Tq. Dist. Latur, Maharashtra, India

Abstract

In this article some results about GCD are discussed and we derive a formula for smallest number of identical cuboids to construct a square floor/ a cube.

Key Words: GCD, LCM, prime, relatively prime, cuboid.

1. INTRODUCTION

$\mathbb{N}=\{1,2,3, \ldots\}, \mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ are sets of natural numbers and integers respectively. A nonzero integer b is a divisor (factor) of $a \in \mathbb{Z}$ if $a=\mathrm{kb}$ for some $\mathrm{k} \in \mathbb{Z}$ and in this case we write $\mathrm{b} \mid a$ and in this case $|\mathrm{b}| \leq|a|$ if $a \neq 0$. Divides ' \mid ' is areflexive, transitive relation on a set of nonzero integers and it is partial order on \mathbb{N}.

For integers $a, \mathrm{~b}$ (not both zero); $\mathrm{d} \in \mathbb{N}$ is called a greatest common divisor (GCD) of a, b denoted by (a, b) or GCD (a, b) if
i) $\quad \mathrm{d}|a, \mathrm{~d}| \mathrm{b}$ and
ii) for any integer e with e $\mid a$ and $\mathrm{e}|\mathrm{b} \Rightarrow \mathrm{e}| \mathrm{d}$

If $(a, b)=1$ then a and b are called relatively prime (coprimes).

For integers $a, \mathrm{~b}, \mathrm{c}$ (not all zero); $\mathrm{d} \in \mathbb{N}$ is called a GCD of $a, \mathrm{~b}, \mathrm{c}$ denoted by $(a, \mathrm{~b}, \mathrm{c})$ if
i) $\quad \mathrm{d}|a, \mathrm{~d}| \mathrm{b}, \mathrm{d} \mid \mathrm{c}$ and
ii) \quad For $\mathrm{e} \in \mathbb{Z}$; $\mathrm{e} \mid a$, e|b and $\mathrm{e}|\mathrm{c} \Rightarrow \mathrm{e}| \mathrm{d}$.

Similarly we define GCD of four or more integers.
For non-zero integers $a, b ; \ell \in \mathbb{N}$ is a least common multiple (LCM) of a, b and denoted by $[a, \mathrm{~b}]$ if
i) $\quad a|\ell, \mathrm{~b}| \ell$ and
ii) $\quad a \mid \mathrm{m}$ and $\mathrm{b} \mid \mathrm{m}$ for $\mathrm{m} \in \mathbb{Z} \Rightarrow \ell \mid \mathrm{m}$

Similarly we define LCM of three or more nonzero integers.

Note that $(a, \mathrm{~b})=(\mathrm{b}, a)=(|a|,|\mathrm{b}|),[a, \mathrm{~b}]=[\mathrm{b}, a]=$ [|a|,|b|].

1.1 Euclid's Lemma:

For $a(\neq 0), \mathrm{b}, \mathrm{c} \in \mathbb{Z} ; a \mid \mathrm{bc}$ and $(a, \mathrm{~b})=1$ $\Rightarrow a \mid c$.
1.2 If $a, \mathrm{~b}$ are non-zero integers and $\mathrm{d}, \mathrm{k} \in \mathbb{N}$ then
$(\mathrm{k} a, \mathrm{~kb})=\mathrm{k}(a, b)$ and $(a, b)=\operatorname{diff}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
1.3 If $a, b, c \in \mathbb{Z}$ and $(a, b)=(a, c)=1$ then $(a, b c)=1$.
1.4 Let $a, \mathrm{~b} \in \mathbb{N}$ and $\mathrm{d}=(a, \mathrm{~b})$. Then
i) There exist $\mathrm{p}, \mathrm{q} \in \mathbb{N}$ with $a=\mathrm{pd}, \mathrm{b}$ $=q d$ and $(p, q)=1$;
ii) $\quad \ell=\mathrm{pqd}=[\mathrm{a}, \mathrm{b}]$ and
iii) $\quad a_{b}=\ell d$
1.5 [1] For any nonzero integers $a, \mathrm{~b}, \mathrm{~h}, \mathrm{k} ;(a \mathrm{~h}, \mathrm{bk})=$ $(a, \mathrm{~b})(\mathrm{h}, \mathrm{k})\left(\frac{a}{(a, b)^{\prime}} \frac{k}{(h, k)}\right)\left(\frac{b}{(a, b)^{\prime}} \frac{h}{(h, k)}\right)$

In particular $(a \mathrm{~h}, \mathrm{bk})=(a, k)(b, h)$ if $(a, b)=(h$,
$\mathrm{k})=1$.

Proof:

Let $\mathrm{d}=(\mathrm{a}, \mathrm{b}), \mathrm{f}=(\mathrm{k}, \mathrm{h})$. Then there exist $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s} \in \mathbb{Z}$ with $a=$ $\mathrm{pd}, \mathrm{b}=\mathrm{qd}, \mathrm{h}=\mathrm{rf}, \mathrm{k}=\operatorname{sf}$ and $(\mathrm{p}, \mathrm{q})=(\mathrm{r}, \mathrm{s})=1$.

Hence $(a \mathrm{~h}, \mathrm{bk})=(\mathrm{prdf}, \mathrm{qsdf})=\mathrm{df}(\mathrm{pr}, \mathrm{qs})$.
Let $\alpha=(p, s), \beta=(q, r)$. Then $\exists p_{1}, s_{1}, q_{1}, r_{1} \in \mathbb{Z}$ such that
$p=p_{1} \alpha, s=s_{1} \alpha, q=q_{1} \alpha, r=r_{1} \alpha$ and $\left(p_{1}, s_{1}\right)=\left(q_{1}, r_{1}\right)=1$.
$\therefore(\mathrm{pr}, \mathrm{qs})=\left(\mathrm{p}_{1} \mathrm{r}_{1} \alpha \beta, \mathrm{q}_{1} \mathrm{~s}_{1} \alpha \beta\right)=\alpha \beta\left(\mathrm{p}_{1} \mathrm{r}_{1}, \mathrm{q}_{1} \mathrm{~s}_{1}\right)=\alpha \beta$,
since $\left(p_{1}, q_{1}\right)=\left(r_{1}, s_{1}\right)=q$ as $(p, q)=(r, s)=1$ and $p_{1}\left|p, q_{1}\right| q$, $\mathrm{r}_{1}\left|\mathrm{r}, \mathrm{s}_{1}\right| \mathrm{s}$.

Now $\left(r_{1}, q_{1}\right)=\left(p_{1}, s_{1}\right)=1$ gives $\left(p_{1} r_{1}, q_{1}\right)=1=\left(p_{1} r_{1}, s_{1}\right)$ and hence ($p_{1} \mathrm{r}_{1}, \mathrm{q}_{1} \mathrm{~s}_{1}$) = 1 and $\left(^{* *}\right.$) follows. Using $\left({ }^{* *}\right)$ in $\left({ }^{*}\right)$, we $\operatorname{get}(a h, h k)=\operatorname{df} \alpha \beta=(a, b)(h, k)(p, s)(q, r)$

$$
\begin{aligned}
& = \\
& \left.\mathrm{k})\left(\frac{a}{(a, b)}, \frac{k}{(h, k)}\right)\left(\frac{b}{(a, b)}, \frac{h}{(h, k)}\right) \quad \mathrm{b}\right)(\mathrm{h},
\end{aligned}
$$

as $\mathrm{p}=\frac{a}{d}=\frac{a}{(a, b)}, \mathrm{s}=\frac{k}{f}=\frac{k}{(h, k)}$ etc.
For more details and proofs of above results, one may refer [2], [3] or any standard book on Elementary Number Theory.

2. Application 1

Now we derive a formula for requiring least number of identical rectangular tiles which need to pave a square floor without breaking any tile.

2.1 Proposition:

If $a, \mathrm{~b} \in \mathbb{N}$ and there are rectangular tiles of size
$a \times b$ (sq. units) then to form a square of smallest size by fitting these tiles requires $\frac{a b}{d^{2}}$ tiles, where $d=$ (a, b). Moreover for any
$\mathrm{k} \in \mathrm{N}$, fitting $\frac{k^{2} a b}{d^{2}}$ tiles we form a square.

Proof:

Let $\mathrm{d}=(a, \mathrm{~b})$ where $a, \mathrm{~b} \in \mathbb{N}$. Then $\frac{a}{d}, \frac{b}{d} \in \mathbb{N}$. Now form a row of $\frac{b}{d}$ tiles, where each tile is of length a and width b.

This row forms a rectangle of size $\frac{a b}{d} \times b$.
Consider $\frac{a}{d}$ such rows. Thus we have $\frac{b}{d} \times \frac{a}{d}$ tiles forming $\frac{a}{d}$ rows and $\frac{b}{d}$ columns, forming a rectangular floor and each side of this rectangle is $\frac{a \times b}{d}=\frac{b \times a}{d}$, i.e. the rectangle is a square of side $\frac{a b}{d}$
unit and number of tiles in this square floor is $\frac{b}{d} \times \frac{a}{d}$ $=\frac{a b}{d^{2}}=\frac{[a, b]}{(a, b)}$ by 1.4.
[Area of the square $=\left(\frac{a b}{d}\right)^{2}=a b \times \frac{a b}{d^{2}}=($ Area of a tile).(number of tiles)].

Let X be any square formed by tiles. Let t, s be number of tiles in row and column respectively in the square X , i.e. X is formed by these tiles.

Now four sides of X are equal gives $a \mathrm{t}=\mathrm{bs}$
$\Rightarrow \frac{a}{d} t=\frac{b}{d}$ sand hence $\frac{a}{d}\left|\frac{b s}{d}, \frac{b}{d}\right| \frac{a t}{d}$
$\Rightarrow \frac{a}{d}\left|\operatorname{s~and} \frac{b}{d}\right| t$ since $\left(\frac{a}{d}, \frac{b}{d}\right)=1$ (by 1.1)
$\Rightarrow \frac{a}{d} \leq$ s and $\frac{b}{d} \leq t$, i.e. $\frac{a b}{d^{2}} \leq$ st $=$ Number of tiles in X.

This proves that the smallest square is formed with $\frac{a b}{d^{2}}$ tiles.

Note that such 4 squares, 9 squares, form squares.
Illustration 1: The smallest square floor which can be completely paved with tiles of size $8 x 6$, without breaking any tile needs
$\frac{8 \times 6}{(8,6)^{2}}=\frac{48}{4}=12$ tiles.

3. Relation between LCM and GCD of three numbers.

For any non-zero integers $a, \mathrm{~b}, \mathrm{c}$ and $\mathrm{k}, \mathrm{d} \in \mathrm{N}$, we have
$(a, \mathrm{~b}, \mathrm{c})=(\mathrm{b}, \mathrm{c}, a)=(\mathrm{c}, a, \mathrm{~b})=(a, \mathrm{c}, \mathrm{b})=(|a|,|\mathrm{b}|$,
$|c|$),
$[a, \mathrm{~b}, \mathrm{c}]=[\mathrm{b}, \mathrm{c}, a]=[\mathrm{c}, a, \mathrm{~b}]=[a, \mathrm{c}, \mathrm{b}]=[|a|,|\mathrm{b}|,|\mathrm{c}|]$,
$(\mathrm{k} a, \mathrm{~kb}, \mathrm{kc})=\mathrm{k}(a, \mathrm{~b}, \mathrm{c}),[\mathrm{k} a, \mathrm{~kb}, \mathrm{kc}]=\mathrm{k}[a, \mathrm{~b}, \mathrm{c}]$ and $(a, \mathrm{~b}, \mathrm{c})=\operatorname{diff}\left(\frac{a}{d}, \frac{b}{d}, \frac{c}{d}\right)=1$
3.1 Theorem: Let $a, \mathrm{~b}, \mathrm{c} \in \mathbb{N}$ and $\mathrm{d}=(a, \mathrm{~b}, \mathrm{c}), \mathrm{d}_{1}=\left(\frac{a}{d} \frac{b}{d} \frac{d}{d}\right), \mathrm{d}_{2}=$ $\left(\frac{b}{d^{\prime}} \frac{c}{d}\right), \mathrm{d}_{3}=\left(\frac{a c}{d} \frac{c}{d}\right)$. Then
i) There exist $a, \mathrm{~b}, \mathrm{c} \in \mathbb{N}$ such that a $=\mathrm{dd}_{1} \mathrm{~d}_{3} a_{1}$, $\mathrm{b}=\mathrm{dd}_{1} \mathrm{~d}_{2} \mathrm{~b}_{1}, \mathrm{c}=\mathrm{dd}_{2} \mathrm{~d}_{3} \mathrm{c}_{1}$;
ii) $\quad\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)=\left(\mathrm{d}_{2}, \mathrm{~d}_{3}\right)=\left(\mathrm{d}_{1}, \mathrm{~d}_{3}\right)=1$
iii) $\quad\left(a_{1}, \mathrm{~d}_{2}\right)=\left(\mathrm{b}_{1}, \mathrm{~d}_{3}\right)=\left(\mathrm{c}_{1}, \mathrm{~d}_{1}\right)=1$
iv) $\quad\left(a_{1}, \mathrm{~b}_{1}\right)=\left(\mathrm{b}_{1}, \mathrm{c}_{1}\right)=\left(a_{1}, \mathrm{c}_{1}\right)=1$
v) $[a, b, c]=\operatorname{dd}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} a_{1} \mathrm{~b}_{1} \mathrm{c}_{1}$ is the LCM of $a, \mathrm{~b}, \mathrm{c}$.
vi) $\quad a \mathrm{bc}=\left[\begin{array}{lll}a, & b & c\end{array}\right](a, b, c)^{2}$ $(a, b)(b, c)(a, c)$.

Proof: Let $a, \mathrm{~b}, \mathrm{c} \in \mathbb{N}, \mathrm{d}=(a, \mathrm{~b}, \mathrm{c}), \mathrm{d}_{1}=\left(\frac{a}{d} \frac{b}{d}\right), \mathrm{d}_{2}=\left(\frac{b}{d}, \frac{a}{d}\right), \mathrm{d}_{3}=$ $\left(\frac{a}{d} \frac{\varepsilon}{d}\right)$.
ii) Let $\mathrm{h}=\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)$. Then $\mathrm{h}\left|\mathrm{d}_{1}, \mathrm{~h}\right| \mathrm{d}_{2}\left(\mathrm{~d}_{1}\left|\frac{a}{d}, \mathrm{~d}_{1}\right| \frac{b}{d^{\prime}}, \mathrm{d}_{2} \left\lvert\, \frac{c}{d}\right.\right)$ it gives
$\left.\mathrm{h}\left|\frac{a}{d}, \mathrm{~h}\right| \frac{b}{d^{\prime}} \mathrm{h} \right\rvert\, \frac{c}{d}$ and hence h divides $\left(\frac{a}{d}, \frac{b}{d^{\prime}}, \frac{a}{d}\right)=1$,
i.e. $h=1=\left(d_{1}, d_{2}\right)$. Similarly $\left(d_{2}, d_{3}\right)=\left(d_{1}, d_{3}\right)=1$.
i) Now $\mathrm{d}_{1}\left|\frac{a}{d} \mathrm{~d}_{3}\right| \frac{a}{d}$, and $\left(\mathrm{d}_{1}, \mathrm{~d}_{3}\right)=1 \Rightarrow \mathrm{~d}_{1} \mathrm{~d}_{3} \left\lvert\, \frac{a}{d}\right.$ by 1.3 .

Hence there exists $a_{1} \in \mathbb{N}$ such that $\frac{a}{d}=\mathrm{d}_{1} \mathrm{~d}_{3} a_{1}$
i.e. $a=d_{1} d_{3} a_{1}$. Similarly there exist $\mathrm{b}_{1}, \mathrm{c}_{1} \in \mathrm{~N}$
such that $\mathrm{b}=\mathrm{dd}_{1} \mathrm{~d}_{2} \mathrm{~b}_{1}, \mathrm{c}=\mathrm{dd}_{2} \mathrm{~d}_{3} \mathrm{C}_{1}$.
iii) Let $\mathrm{g}=\left(a_{1}, \mathrm{~d}_{2}\right)$. Then $\left.\mathrm{g}\right|_{d^{\prime}} ^{\frac{a}{g}}, \left.\frac{b}{d^{\prime}} \mathrm{g} \right\rvert\, \frac{c}{d}$ as $a_{1} \left\lvert\, \frac{a}{d}\right.$ and d_{2} $=\left(\frac{b}{d^{\prime}}, \frac{a}{d}\right)$.
\Rightarrow g divides $\left(\frac{a}{d}, \frac{b}{d}, \frac{a}{d}\right)=1$, i.e. $\left(a_{1}, \mathrm{~d}_{2}\right)=\mathrm{g}=1$.
Similarly $\left(b_{1}, d_{3}\right)=\left(c_{1}, d_{1}\right)=1$.
iv) Let $\mathrm{f}=\left(a_{1}, \mathrm{~b}_{1}\right)$. Then $\mathrm{f}\left|\frac{a}{d d_{1}}, \mathrm{f}\right| \frac{b}{d d_{1}}$ by (i)
$\Rightarrow \mathrm{f}$ divides $\left(\frac{a}{d d_{1}}, \frac{b}{d d_{1}}\right)=1$, since $\mathrm{d}_{1}=\left(\frac{a}{d} \frac{b}{d}\right)$.
i.e. $\left(a_{1}, b_{1}\right)=f=1$. Similarly $\left(b_{1}, c_{1}\right)=\left(a_{1}, c_{1}\right)=1$.
v) $\ell=\mathrm{dd}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} a_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \in \mathbb{N}$ and $\ell=a_{\mathrm{d}_{2}} \mathrm{~b}_{1} \mathrm{c}_{1}=\mathrm{bd}_{3} a_{1} \mathrm{c}_{1}=$ $\mathrm{cd}_{1} a_{1} \mathrm{~b}_{1}$ by (i)
$\Rightarrow a|\ell, \mathrm{~b}| \ell$ and $\mathrm{c} \mid \ell$.
Let $\mathrm{m} \in \mathbb{Z}$ be such that $a|\mathrm{~m}, \mathrm{~b}| \mathrm{m}, \mathrm{c} \mid \mathrm{m}$. Then by (i),
$\left.\mathrm{d}_{1} \mathrm{~d}_{3} a_{1}\left|\frac{m}{d^{\prime}}, \mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~b}_{1}\right| \frac{m}{d^{\prime}} \mathrm{d}_{2} \mathrm{~d}_{3} \mathrm{c}_{1} \right\rvert\, \frac{m}{d}$.
Now, $\left(\mathrm{d}_{1}, \mathrm{c}_{1}\right)=1=\left(\mathrm{d}_{1}, \mathrm{~d}_{2} \mathrm{~d}_{3}\right)$ by (ii) and (iii) $\Rightarrow\left(\mathrm{d}_{1}\right.$, $\left.\mathrm{d}_{2} \mathrm{~d}_{3} \mathrm{c}_{1}\right)=1$.
$\Rightarrow \mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} \mathrm{c}_{1} \left\lvert\, \frac{m}{d}\right.$ as $\mathrm{d}_{1} \left\lvert\, \frac{m}{d}\right.$ and $\mathrm{d}_{2} \mathrm{~d}_{3} \mathrm{c}_{1} \left\lvert\, \frac{m}{d}\right.$.
Similarly $\mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} a_{1}\left|\frac{m}{d}, \mathrm{~d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} \mathrm{~b}_{1}\right| \frac{m}{d}$.
Thus $a_{1}\left|\frac{m}{d d_{1} d_{2} d_{\mathrm{a}}}, \mathrm{b}_{1}\right| \frac{m}{d d_{1} d_{2} d_{\mathrm{s}}}, \mathrm{c}_{1} \left\lvert\, \frac{m}{d d_{1} d_{2} d_{\mathrm{a}}}\right.$.
As $\left(a_{1}, c_{1}\right)=\left(b_{1}, c_{1}\right)=1=\left(a_{1}, b_{1}\right) \Rightarrow\left(a_{1} b_{1}, c_{1}\right)=1$, so from
above we have $a_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \left\lvert\, \frac{m}{d d_{1} d_{2} d_{\mathrm{s}}}\right.$ i.e. $\mathrm{dd}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} a_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mid \mathrm{m}$.
i.e. $\ell=\mathrm{dd}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} a_{1} \mathrm{~b}_{1} \mathrm{c}_{1}$ divides m .

Hence $\ell=\operatorname{dd}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} a_{1} \mathrm{~b}_{1} \mathrm{c}_{1}=[a, \mathrm{~b}, \mathrm{c}]$ is the LCM of $a, \mathrm{~b}$, c.
iii)

By

> (i), $\begin{aligned} & a \mathrm{bc}=\mathrm{d}^{3}\left(\mathrm{~d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3}\right)^{2} a_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \\ &=[a, \mathrm{~b}, \mathrm{c}] \mathrm{d}^{2} \mathrm{~d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} \text { by }(\mathrm{v}) \\ &=a, \mathrm{~b}, \mathrm{c}^{2}(a, \mathrm{~b})(\mathrm{b},\end{aligned}$ c) (a, c).
3.2 Corollary: If $a, \mathrm{~b}, \mathrm{c} \in \mathbb{N}$ and $\mathrm{d}=(a, \mathrm{~b}, \mathrm{c})$ such that $a=$ $\mathrm{d} a_{1}$,
$\mathrm{b}=\mathrm{db}_{1}, \mathrm{c}=\mathrm{dc}_{1}$ and $\left(a_{1}, \mathrm{~b}_{1}\right)=\left(\mathrm{b}_{1}, \mathrm{c}_{1}\right)=\left(a_{1}, \mathrm{c}_{1}\right)=1$ then
$a_{\mathrm{bc}}=a, \mathrm{~b}, \mathrm{c}^{2}$.
Proof follows from theorem 3.1, since here $d_{1}=d_{2}=d_{3}=1$.
Cuboid of size a_{xbxc} is a solid rectangular parallelepiped of length a, width b and height c. (units).

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 06 Issue: 11 | Nov 2019
www.irjet.net
p-ISSN: 2395-0072

3.3 Proposition:

If $a, \mathrm{~b}, \mathrm{c} \in \mathbb{N}$ and there are cuboids of same size a_{Xbxc} (cubic units), then using $\frac{(a b c)^{2}}{\left(d^{2} d_{1} d_{2} d_{\mathrm{B}}\right)^{2}}$ cuboids we can form a solid cube. Moreover for any $k \in \mathbb{N}$, using $\frac{k^{3}(a b c)^{2}}{\left(d^{2} d_{1} d_{2} d_{3}\right)^{3}}$ cuboids, we can form a solid cube, where $\mathrm{d}=(a, \mathrm{~b}, \mathrm{c})$,

$$
\mathrm{d}_{1}=\left(\frac{a}{d}, \frac{b}{d}\right), \mathrm{d}_{2}=\left(\frac{b}{d}, \frac{c}{d}\right), \mathrm{d}_{3}=\left(\frac{a}{d}, \frac{c}{d}\right) .
$$

Proof: Let $a, \mathrm{~b}, \mathrm{c} \in \mathbb{N} ; a=\mathrm{dd}_{1} \mathrm{~d}_{3} a, \mathrm{~b}=\mathrm{dd}_{1} \mathrm{~d}_{2} \mathrm{~b}_{1}, \mathrm{c}=\mathrm{dd}_{2} \mathrm{~d}_{3} \mathrm{c}_{1}$
Where $\mathrm{d}=(a, \mathrm{~b}, \mathrm{c}), \mathrm{d}_{1}=\left(\frac{a}{d}, \frac{b}{d}\right), \mathrm{d}_{2}=\left(\frac{b}{d}, \frac{c}{d}\right), \mathrm{d}_{3}=\left(\frac{a}{d}, \frac{c}{d}\right)$ and $a_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1} \in \mathbb{N}$.

row.
Consider cuboids as tiles of sizes a_{xb} with thickness (height) c.

Now we form a square floor with $\frac{b c}{d^{2} d_{1} d_{Z} d_{Z}}$ columns and $\frac{a c}{d^{2} d_{1} d_{2} d_{\mathbb{2}}}$ rows of tiles.
[Note that $\frac{b c}{d^{2} d_{1} d_{Z} d_{\Omega}}, \frac{a c}{d^{2} d_{1} d_{\Omega} d_{\Omega}}, \frac{a b}{d^{2} d_{1} d_{2} d_{s}} \in \mathbb{N}$.]
Thus we have a cuboid with square base of side $\frac{a b c}{d^{2} d_{1} d_{2} d_{3}}$ and height c .

Now consider such $\frac{a b}{d^{2} d_{1} d_{z} d_{\Sigma}}$ cuboids (with square base) and installing them we get a solid cube of edge $\frac{a b e}{d^{2} d_{1} d_{2} d_{3}}$. For this forming the solid cube we require
$\frac{b c}{d^{2} d_{1} d_{2} d_{3}} \times \frac{a c}{d^{2} d_{1} d_{2} d_{\mathrm{s}}} \times \frac{a b}{d^{2} d_{1} d_{2} d_{\mathrm{g}}}=\frac{(a b c)^{2}}{\left(d^{2} d_{1} d_{2} d_{3}\right)^{2}}$ cuboids.

Remark:

In proposition 3.2, if $\left(\mathrm{d}_{2}, \mathrm{c}_{1}\right)=\left(\mathrm{d}_{3}, \mathrm{c}_{1}\right)=\left(\mathrm{d}_{1}, \mathrm{~b}_{1}\right)=1$.

Then number of cuboids required to form smallest cube is $\frac{(a b c)^{2}}{\left(d^{2} d_{1} d_{2} d_{3}\right)^{2}}$

Let X be a cube formed from cuboids each of size a_{Xbxc}. Let r, s, t be a number of cuboids along the sides of the cube X. As each edge of X is same, we have
$a_{\mathrm{r}}=\mathrm{bs}=\mathrm{ct}$, i.e. $\mathrm{d}_{1} \mathrm{~d}_{3} a_{1} \mathrm{r}=d_{1} d_{2} \mathrm{~b}_{1} \mathrm{~s}=\mathrm{d}_{2} \mathrm{~d}_{3} \mathrm{c}_{1} \mathrm{t}$
$\Rightarrow \mathrm{d}_{3} a_{1} \mathrm{r}=\mathrm{d}_{2} \mathrm{~b}_{1} \mathrm{~s}, \mathrm{~d}_{1} a_{1} \mathrm{r}=\mathrm{d}_{2} \mathrm{c}_{1} \mathrm{t}$
Now $\mathrm{d}_{2} \mathrm{~b}_{1} \mid \mathrm{d}_{3} a_{1} \mathrm{r}$ with $\left(\mathrm{d}_{2}, \mathrm{~d}_{3}\right)=\left(\mathrm{d}_{2}, a_{1}\right)=1$, so $\left(\mathrm{d}_{2}, \mathrm{~d}_{3} a_{1}\right)=1$, $\left(\mathrm{b}_{1}, a_{1}\right)=1=\left(\mathrm{b}_{1}, \mathrm{~d}_{3}\right)=1$, so $\left(\mathrm{b}_{1}, \mathrm{~d}_{3} a_{1}\right)=1$ (See theorem 3.1) and hence $\left(\mathrm{d}_{2} \mathrm{~b}_{1}, \mathrm{~d}_{3} a_{1}\right)=1$, which gives by 1.1, $\mathrm{d}_{2} \mathrm{~b}_{1} \mid \mathrm{r}$.

Also we have $\mathrm{c}_{1} \mid \mathrm{d}_{1} a_{1} \mathrm{r}$ and $\left(\mathrm{c}_{1}, \mathrm{~d}_{1}\right)=\left(\mathrm{c}_{1}, a_{1}\right)=1$,
i.e. $\left(\mathrm{c}_{1}, \mathrm{~d}_{1} a_{1}\right)=1$, so again by $1.1, \mathrm{c}_{1} \mid \mathrm{r}$.
$d_{2} b_{1}\left|r, c_{1}\right| r$ and $\left(b_{1}, c_{1}\right)=1,\left(d_{2}, c_{1}\right)=1$ i.e. $\left(d_{2} b_{1}, c_{1}\right)=1$
gives $\mathrm{d}_{2} \mathrm{~b}_{1} \mathrm{c}_{1} \mid \mathrm{r}$ (by 1.1). Now $\frac{b c}{d^{2} d_{1} d_{2} d_{\mathrm{g}}}=\mathrm{d}_{2} \mathrm{~b}_{1} \mathrm{c}_{1}$ divides r .
Thus $\frac{b e}{d^{2} d_{1} d_{2} d_{3}} \leq r$.
Using $\left(d_{3}, c_{1}\right)=\left(d_{1}, b_{1}\right)=1$, we get

$$
\frac{a c}{d^{2} d_{1} d_{2} d_{\mathrm{I}}}=\mathrm{d}_{3} \mathrm{a}_{1} \mathrm{c}_{1} \leq \mathrm{s}, \frac{a b}{d^{2} d_{1} d_{2} d_{3}}=\mathrm{d}_{1} \mathrm{a}_{1} \mathrm{~b}_{1} \leq \mathrm{t}
$$

Hence $\frac{a b c^{2}}{\left(d^{2} d_{1} d_{2} d_{B}\right)^{3}} \leq \mathrm{rst}=$ Number of cuboids in X .
This proves that the smallest cube is formed with $\frac{(a b c)^{2}}{\left(d^{2} d_{1} d_{2} d_{\mathrm{g}}\right)^{3}}$ cuboids.

If $\mathrm{d}_{1}=\mathrm{d}_{2}=\mathrm{d}_{3}=1$ then $\frac{a b c^{2}}{\left(d^{2} d d_{1} d_{2} d_{B}\right)^{3}}=\frac{a b c^{3}}{(d)^{6}}$

3.4 Corollary [Application 2]

Let $a, \mathrm{~b}, \mathrm{c} \in \mathbb{N}, \mathrm{d}=(a, \mathrm{~b}, \mathrm{c}), \mathrm{d}_{1}=\left(\frac{a}{d} \frac{b}{d}\right), \mathrm{d}_{2}=\left(\frac{b}{d^{\prime}} \frac{a}{d}\right), \mathrm{d}_{3}=\left(\frac{a}{d} \frac{c}{d}\right)$ and $a=\operatorname{dd}_{1} \mathrm{~d}_{3} a_{1}, \mathrm{~b}=\mathrm{dd}_{1} \mathrm{~d}_{2} \mathrm{~b}_{1}$,
$c={d d_{2}}_{2} d_{3} c_{1}$. If one of the following holds:
$\left(\mathrm{d}_{1}, a_{1}\right)=1,\left(\mathrm{~d}_{1}, \mathrm{~b}_{1}\right)=1,\left(\mathrm{~d}_{2}, \mathrm{~b}_{1}\right)=1,\left(\mathrm{~d}_{2}, \mathrm{c}_{1}\right)=1,\left(\mathrm{~d}_{3}, a_{1}\right)=1$, $\left(\mathrm{d}_{3}, \mathrm{c}_{1}\right)=1$
then using $\frac{(a b c)^{2}}{\left(d^{2} d_{1} d_{2} d_{3}\right)^{2}}$ cuboids, each of size $a_{\mathrm{x}} \mathrm{b} \times \mathrm{c}$ (cubic units), we can form the smallest cube without breaking any cuboid.

Hint: In the above remark, for $\left(d_{2}, \mathrm{c}_{1}\right)=1$, we have $\frac{b e}{d^{3} d_{1} d_{\Omega} d_{\mathrm{a}}} \leq$ r, i.e., $\frac{a b e}{d^{2} d_{1} d_{2} d_{\mathrm{B}}} \leq a_{\mathrm{r}}$
$\Rightarrow\left(\frac{a b c}{d^{2} d_{1} d_{2} d_{3}}\right)^{3} \leq(a r)^{3}=$ Volume of the cube X
From this corollary 3.4 follows.
Illustration 2: Determination of the number of cuboids, each of size $100 \times 210 \times 375$ (cubic units) to form the smallest solid cube without breaking any cube.

For $a=100=5 \times 2 \times 5 \times 2, b=210=$ $5 \times 2 \times 3 \times 7, \mathrm{c}=375=5 \times 3 \times 5 \times 5 \in \mathbb{N}$.

We have $\mathrm{d}=(a, \mathrm{~b}, \mathrm{c})=5, \mathrm{~d}_{1}=\left(\frac{a}{d} \frac{b}{d}\right)=2, \mathrm{~d}_{2}=\left(\frac{b}{d} \frac{a}{d}\right)=3$, $\mathrm{d}_{3}=\left(\frac{a}{d} \frac{c}{d}\right)=5, a_{1}=2, \mathrm{~b}_{1}=7, \mathrm{c}_{1}=5$, with $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}$ are pairwise relatively prime and $a_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}$ pairwise relatively prime with $\left(a_{1}, \mathrm{~d}_{2}\right)=\left(\mathrm{b}_{1}, \mathrm{~d}_{3}\right)=\left(\mathrm{c}_{1}, \mathrm{~d}_{1}\right)=1$ (verifies theorem 3.1).

Note that $\left(d_{1}, a_{1}\right)=2,\left(d_{1}, b_{1}\right)=1=\left(d_{2}, b_{1}\right)=\left(d_{2}, c_{1}\right)$ $=\left(\mathrm{d}_{3}, a_{1}\right)=1$ and $\left(\mathrm{d}_{3}, \mathrm{c}_{1}\right)=5$.

So by corollary 3.4; to form smallest cube from cuboids, each of size $a \times b \times c$ (cubic units) without breaking any cuboid requires number of cuboids
$\frac{a b c}{\left(d^{2} d_{1} d_{2} d_{\mathbb{B}}\right)^{\mathrm{a}}}=\frac{100 \times 210 \times 375}{\left(5^{2} \times 2 \times 3 \times 5\right)^{3}}=\frac{(7875000)^{3}}{(750)^{3}}=147000$.
3.5 Corollary. Let $a, \mathrm{~b}, \mathrm{c} \in \mathbb{N}, \mathrm{d}=(a, \mathrm{~b}, \mathrm{c})$ and $\mathrm{a}=\mathrm{d} a_{1}, \mathrm{~b}=\mathrm{dc}_{1}$, $\mathrm{c}=\mathrm{dc}_{1}$ with

$$
\left(a_{1}, \mathrm{~b}_{1}\right)=\left(\mathrm{b}_{1}, \mathrm{c}_{1}\right)=\left(a_{1}, \mathrm{c}_{1}\right)=1
$$

Using $\frac{a b c^{3}}{(d)^{6}}$ cuboids, each of size a_{Xbxc}, we can form smallest solid cube. For any $k \in \mathbb{N}$, using $\frac{k^{8}(a b c)^{2}}{(d)^{6}}$ such cuboids we form a solid cube.

Illustration 3: To form smallest cube from cuboids each of size $10 \times 6 \times 4$, we require

$$
\frac{(10 \times 6 \times 4)^{2}}{(10,6,4)^{6}}=\frac{(10 \times 6 \times 4)^{2}}{2^{6}}=(5 \times 3 \times 2)^{2}=900 .
$$

CONCLUSION:

Using proposition 3.1 and corollary 3.4, we can solve problems of constructing a square floor or a cube from identical tiles (cuboids)

References:

[1] Apostol Tom M., Introduction to Analytic Number Theory, Springer (First Indian Reprint, 2010).
[2] Burton David M., Elementary Number Theory, $6^{\text {th }}$ Edition, Tata McGraw Hill, 2007.
[3] Rosen Kenneth H., Elementary Number Theory, 6th Edition, Pearson, 2015.

