

On Greatest Common Divisor and its Application for a Geometrical Structure

A.K. Mule¹, J.N. Salunke²

¹Department of Mathematics MGM College Ahmedpur, Tq. Ahmedpur Dist. Latur, Maharashtra, India ²Former Director School of Mathematical Sciences SRTMU Nanded at Post Khadgaon, Tq. Dist. Latur, Maharashtra, India

Abstract - In this article some results about GCD are discussed and we derive a formula for smallest number of identical cuboids to construct a square floor/ a cube.Note that $(a,b) = (b,a) = (a , b), [a,b] = [b,a] = [a , b].$	^ ^ ^ ^		
	Abstract - In this article some results about GCD are discussed and we derive a formula for smallest number of identical cuboids to construct a square floor/ a cube.	Note that $(a,b) = (b,a) = (a , b), [a,b] = [b,a] = [a , b].$	

Key Words: GCD, LCM, prime, relatively prime, cuboid.

1. INTRODUCTION

 $\mathbb{N} = \{1,2,3,...\}, \mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3,...\}$ are sets of natural numbers and integers respectively. A nonzero integer b is a divisor (factor) of $\mathbf{a} \in \mathbb{Z}$ if $\mathbf{a} = kb$ for some $k \in \mathbb{Z}$ and in this case we write $b|\mathbf{a}$ and in this case $|b| \leq |\mathbf{a}|$ if $\mathbf{a} \neq 0$. Divides '|' is areflexive, transitive relation on a set of nonzero integers and it is partial order on \mathbb{N} .

For integers a, b (not both zero); $d \in \mathbb{N}$ is called a greatest common divisor (GCD) of a, b denoted by (a,b) or GCD (a,b) if

i)	d a , d b	and
- J	a - , a s	

ii) for any integer e with e|a and $e|b \Rightarrow e|d$

If (**a**,b) = 1 then **a** and b are called relatively prime (coprimes).

For integers a, b, c (not all zero); $d \in \mathbb{N}$ is called a GCD of a, b, c denoted by (a,b,c) if

i) d|a, d|b, d|c and

ii) For $e \in \mathbb{Z}$; e|a, e|b and $e|c \Rightarrow e|d$.

Similarly we define GCD of four or more integers.

For non-zero integers a,b; $\ell \in \mathbb{N}$ is a least common multiple (LCM) of a, b and denoted by [a,b] if

i) $a \mid \ell, b \mid \ell$ and

ii) $a \mid m \text{ and } b \mid m \text{ for } m \in \mathbb{Z} \Rightarrow \ell \mid m$

Similarly we define LCM of three or more nonzero integers.

1.1 **Euclid's Lemma**:

- For $a(\neq 0)$, b, $c \in \mathbb{Z}; a \mid bc$ and (a,b) = 1 $\Rightarrow a \mid c$.
- 1.2 If a, b are non-zero integers and d, $k \in \mathbb{N}$ then $a \ b_{\lambda}$

$$(ka, kb) = k(a, b) \text{ and } (a, b) = d \text{ iff } (\frac{a}{d}, \frac{a}{d}) = 1.$$

1.3 If
$$a$$
, b, c $\in \mathbb{Z}$ and $(a,b) = (a,c) = 1$ then
 $(a,bc) = 1$.

1.4 Let
$$a, b \in \mathbb{N}$$
 and $d=(a,b)$. Then
i) There exist $p, q \in \mathbb{N}$ with $a = pd, b$
 $= qd$ and $(p,q) = 1;$

- ii) $\ell = pqd = [a,b]$ and
- iii) $ab = \ell d$

1.5 [1] For any nonzero integers
$$a$$
, b, h, k; $(a$ h, bk) =
(a , b) (h, k) $\left(\frac{a}{(a,b)}, \frac{k}{(h,k)}\right) \left(\frac{b}{(a,b)}, \frac{h}{(h,k)}\right)$

In particular (a, b) = (a, k) (b, h) if (a, b) = (h, b)

k) = 1.

Proof:

Let d = (a, b), f = (k, h). Then there exist p, q, r, $s \in \mathbb{Z}$ with a = pd, b = qd, h = rf, k = sf and (p, q) = (r, s) = 1.

Hence (ah, bk) = (prdf, qsdf) = df (pr, qs).

Let $\alpha = (p, s)$, $\beta = (q, r)$. Then $\exists p_1, s_1, q_1, r_1 \in \mathbb{Z}$ such that

 $p = p_1 \alpha$, $s = s_1 \alpha$, $q = q_1 \alpha$, $r = r_1 \alpha$ and $(p_1, s_1) = (q_1, r_1) = 1$.

 $\therefore(\text{pr}, \text{qs}) = (p_1 r_1 \alpha \beta, q_1 s_1 \alpha \beta) = \alpha \beta (p_1 r_1, q_1 s_1) = \alpha \beta,$

since $(p_1, q_1) = (r_1, s_1) = q$ as (p, q) = (r, s) = 1 and $p_1|p, q_1|q, r_1|r, s_1|s.$

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 06 Issue: 11 | Nov 2019www.irjet.netp-ISSN: 2395-0072

Now $(r_1, q_1) = (p_1, s_1) = 1$ gives $(p_1r_1, q_1) = 1 = (p_1r_1, s_1)$ and hence $(p_1r_1, q_1s_1) = 1$ and (**) follows. Using (**) in (*), we get (**a**, h, k) = df $\alpha\beta = ($ **a**, b)(h, k)(p, s)(q, r)

$$= (a, b)(h)(\frac{a}{(a,b)}(h,k))(\frac{b}{(a,b)}(h,k))$$

as $p = \frac{a}{d} = \frac{a}{(a,b)}$, $s = \frac{k}{f} = \frac{k}{(h,k)}$ etc.

For more details and proofs of above results, one may refer [2], [3] or any standard book on Elementary Number Theory.

2. Application 1

Now we derive a formula for requiring least number of identical rectangular tiles which need to pave a square floor without breaking any tile.

2.1 Proposition:

If a, $b \in \mathbb{N}$ and there are rectangular tiles of size

 $a \times b$ (sq. units) then to form a square of smallest size by fitting these tiles requires $\frac{ab}{d^2}$ tiles, where d =

(a,b). Moreover for any

 $k \in N$, fitting $\frac{k^2 ab}{d^2}$ tiles we form a square.

Proof:

Let d = (*a*,b) where *a*, b $\in \mathbb{N}$. Then $\frac{a}{d}$, $\frac{b}{d} \in \mathbb{N}$. Now form a row of $\frac{b}{d}$ tiles, where each tile is of length *a* and width b.

 $\left(\frac{p}{d}\right)$ tiles in this row.)

This row forms a rectangle of size $\frac{ab}{d} \times b$.

Consider $\frac{a}{d}$ such rows. Thus we have $\frac{b}{d} \times \frac{a}{d}$ tiles forming $\frac{a}{d}$ rows and $\frac{b}{d}$ columns, forming a rectangular floor and each side of this rectangle is $\frac{a \times b}{d} = \frac{b \times a}{d}$, i.e. the rectangle is a square of side $\frac{ab}{d}$ unit and number of tiles in this square floor is $\frac{b}{d} \times \frac{a}{d}$

$$=\frac{ab}{a^2}=\frac{[a,b]}{(a,b)}$$
 by 1.4.

[Area of the square = $(\frac{ab}{d})^2 = ab \times \frac{ab}{d^2} =$ (Area of a tile).(number of tiles)].

Let X be any square formed by tiles. Let t, s be number of tiles in row and column respectively in the square X, i.e. X is formed by these tiles.

Now four sides of X are equal gives **a**t = bs

$$\Rightarrow \frac{a}{d}t = \frac{b}{d} \text{ sand hence } \frac{a}{d} | \frac{bs}{d}, \frac{b}{d} | \frac{at}{d}$$
$$\Rightarrow \frac{a}{d} | \text{ sand } \frac{b}{d} | t \text{ since } (\frac{a}{d}, \frac{b}{d}) = 1 \text{ (by 1.1)}$$
$$\Rightarrow \frac{a}{d} \leq \text{ s and } \frac{b}{d} \leq \text{ t, i.e. } \frac{ab}{d^2} \leq \text{ st} = \text{ Number of tiles in X.}$$

This proves that the smallest square is formed with $\frac{ab}{d^2}$ tiles.

Note that such 4 squares, 9 squares, form squares.

Illustration 1: The smallest square floor which can be completely paved with tiles of size 8x6, without breaking any tile needs

3. Relation between LCM and GCD of three numbers.

For any non-zero integers \boldsymbol{a} , b, c and k, d \in N, we have

$$(a, b, c) = (b, c, a) = (c, a, b) = (a, c, b) = (|a|, |b|,$$

|c|),

$$[a, b, c] = [b, c, a] = [c, a, b] = [a, c, b] = [|a|, |b|, |c|],$$

(ka, kb, kc) = k(a, b, c), [ka, kb, kc] = k[a, b, c] and

$$(a, b, c) = d \operatorname{iff}\left(\frac{a}{a'}\frac{b}{a}, \frac{c}{a'}\right) = 1$$

3.1 Theorem: Let \boldsymbol{a} , b, c $\in \mathbb{N}$ and d = (\boldsymbol{a} , b, c), d₁ = ($\frac{\boldsymbol{a}}{\boldsymbol{d}} \frac{\boldsymbol{b}}{\boldsymbol{d}}$), d₂ =

 $\left(\frac{b}{a'a}\right)$, d₃ = $\left(\frac{a}{a'a}\right)$. Then

i) There exist a, b, c $\in \mathbb{N}$ such that a= dd₁d₃ a_1 , b = dd_d b, c = dd_d c,:

$$D = aa_1a_2b_1, c = aa_2a_3c_1;$$
ii) $(d_1 d_2) = (d_2 d_3) = (d_1 d_2) = 1$

iii)
$$(a_{1}, d_{2}) = (b_{1}, d_{3}) = (c_{1}, d_{1}) = 1$$

- iii) $(a_{1},d_{2}) = (b_{1},d_{3}) = (c_{1},d_{1}) = 1$ iv) $(a_{1},b_{1}) = (b_{1},c_{1}) = (a_{1},c_{1}) = 1$
- v) $[a, b, c] = dd_1d_2d_3a_1b_1c_1$ is the LCM of a, b, c.
- vi) $abc = a, b, c^2$ (a,b)(b,c)(a,c).

Proof: Let a, b, c $\in \mathbb{N}$, d = (a, b, c), d₁ = $(\frac{a}{d}, \frac{b}{d})$, d₂ = $(\frac{b}{d}, \frac{c}{d})$, d₃ = $(\frac{a}{d}, \frac{c}{d})$.

ii) Let h = (d₁, d₂). Then h|d₁, h|d₂ (d₁| $\frac{a}{d}$, d₁| $\frac{b}{d}$, d₂| $\frac{c}{d}$) it gives

 $h|\frac{a}{d}, h|\frac{b}{d}, h|\frac{c}{d} \text{ and hence h divides } \left(\frac{a}{d}, \frac{b}{d}, \frac{c}{d}\right) = 1,$ i.e. $h = 1 = (d_1, d_2)$. Similarly $(d_2, d_3) = (d_1, d_3) = 1$. i) Now $d_1|\frac{a}{d}, d_3|\frac{a}{d}$ and $(d_1, d_3) = 1 \Rightarrow d_1d_3|\frac{a}{d}$ by 1.3.

Hence there exists $a_1 \in \mathbb{N}$ such that $\frac{a}{d} = d_1 d_3 a_1$

- i.e. $\mathbf{a} = dd_1d_3\mathbf{a}_1$. Similarly there exist $b_1, c_1 \in N$
- such that $b = dd_1d_2b_1$, $c = dd_2d_3c_1$.

iii) Let
$$g = (a_1, d_2)$$
. Then $g | \frac{a}{d}, g | \frac{b}{d}, g | \frac{c}{d}$ as $a_1 | \frac{a}{d}$ and $d_2 = (\frac{b}{d}, \frac{c}{d})$.

⇒g divides
$$\left(\frac{a}{d}, \frac{b}{d}, \frac{c}{d}\right) = 1$$
, i.e. $(a_1, d_2) = g = 1$.

Similarly $(b_1, d_3) = (c_1, d_1) = 1$.

iv) Let
$$f = (a_1, b_1)$$
. Then $f|\frac{a}{dd_1}$, $f|\frac{b}{dd_1}$ by (i)
 \Rightarrow f divides $(\frac{a}{dd_1}, \frac{b}{dd_1}) = 1$, since $d_1 = (\frac{a}{d}, \frac{b}{d})$.

i.e. $(a_1, b_1) = f = 1$. Similarly $(b_1, c_1) = (a_1, c_1) = 1$.

v) $\ell = dd_1d_2d_3a_1b_1c_1 \in \mathbb{N}$ and $\ell = ad_2b_1c_1 = bd_3a_1c_1 = cd_1a_1b_1$ by (i)

 $\Rightarrow \boldsymbol{a}|\ell, \mathbf{b}|\ell \text{ and } \mathbf{c}|\ell.$

Let $m \in \mathbb{Z}$ be such that a|m, b|m, c|m. Then by (i),

 $\mathrm{d}_1\mathrm{d}_3\boldsymbol{a}_1|\frac{\boldsymbol{m}}{\boldsymbol{d}},\,\mathrm{d}_1\mathrm{d}_2\mathrm{b}_1|\frac{\boldsymbol{m}}{\boldsymbol{d}},\,\mathrm{d}_2\mathrm{d}_3\mathrm{c}_1|\frac{\boldsymbol{m}}{\boldsymbol{d}}.$

Now, $(d_1, c_1) = 1 = (d_1, d_2d_3)$ by (ii) and (iii) $\Rightarrow (d_1, d_2d_3c_1) = 1$.

$$\Rightarrow d_1 d_2 d_3 c_1 | \frac{m}{d} \text{ as } d_1 | \frac{m}{d} \text{ and } d_2 d_3 c_1 | \frac{m}{d}.$$

Similarly $d_1 d_2 d_3 a_1 | \frac{m}{d}, d_1 d_2 d_3 b_1 | \frac{m}{d}.$
Thus $a_1 | \frac{m}{dd_1 d_2 d_3}, b_1 | \frac{m}{dd_1 d_2 d_3}, c_1 | \frac{m}{dd_1 d_2 d_3}.$
As $(a_1, c_1) = (b_1, c_1) = 1 = (a_1, b_1) \Rightarrow (a_1 b_1, c_1) = 1$, so

from

c.

above we have
$$a_1b_1c_1 | \frac{m}{dd_1d_2d_3}$$
 i.e. $dd_1d_2d_3a_1b_1c_1 | m$.

i.e. $\ell = dd_1d_2d_3a_1b_1c_1$ divides m.

Hence $\ell = dd_1d_2d_3a_1b_1c_1 = [a, b, c]$ is the LCM of a, b,

iii) By
(i),
$$abc = d^3(d_1d_2d_3)^2a_1b_1c_1$$

 $= [a, b, c]d^2d_1d_2d_3$ by (v)
 $= [a, b, c] (a, b, c)^2(a, b)(b, c)(a, c).$

3.2 Corollary: If a, b, c $\in \mathbb{N}$ and d = (a, b, c) such that $a = da_1$,

$$b = db_1, c = dc_1 and (a_1, b_1) = (b_1, c_1) = (a_1, c_1) = 1$$

then

abc = a, b, c².

Proof follows from theorem 3.1, since here $d_1 = d_2 = d_3 = 1$.

Cuboid of size **a**xbxc is a solid rectangular parallelepiped of length**a**, width b and height c. (units).

International Research Journal of Engineering and Technology (IRJET) **IRIET** Volume: 06 Issue: 11 | Nov 2019

www.irjet.net

3.3 Proposition:

If a, b, c $\in \mathbb{N}$ and there are cuboids of same size

axbxc (cubic units), then using $\frac{(abc)^2}{(d^2d_1d_2d_3)^3}$ cuboids we can form a solid cube. Moreover for any $k \in \mathbb{N}$, using $\frac{k^3(abc)^2}{(d^2d_1d_2d_2)^3}$ cuboids, we can form a solid cube, where d = (a, b, c),

$$\mathbf{d}_1 = (\frac{a}{d}, \frac{b}{d}), \mathbf{d}_2 = (\frac{b}{d}, \frac{c}{d}), \mathbf{d}_3 = (\frac{a}{d}, \frac{c}{d})$$

Proof: Let \boldsymbol{a} , b, c $\in \mathbb{N}$; $\boldsymbol{a} = dd_1d_3\boldsymbol{a}_1$, b = $dd_1d_2b_1$, c = $dd_2d_3c_1$

Where d = (a, b, c), d_1 = $(\frac{a}{d}, \frac{b}{d}), d_2 = (\frac{b}{d}, \frac{c}{d}), d_3 = (\frac{a}{d}, \frac{c}{d})$

and a_1 , b_1 , $c_1 \in \mathbb{N}$.

row.

Consider cuboids as tiles of sizes *axb* with thickness (height) C.

Now we form a square floor with $\frac{bc}{d^2d_1d_2d_2}$ columns and $\frac{ac}{d^2d_1d_2d_2}$ rows of tiles.

[Note that $\frac{bc}{d^2d_1d_2d_3}$, $\frac{ac}{d^2d_1d_2d_3}$, $\frac{ab}{d^2d_1d_2d_3} \in \mathbb{N}$.]

Thus we have a cuboid with square base of side $\frac{abc}{d^2d_1d_2d_2}$ and height c.

Now consider such $\frac{ab}{d^2 d_1 d_2 d_3}$ cuboids (with square base) and installing them we get a solid cube of edge $\frac{abc}{d^2 d_1 d_2 d_3}$ For this forming the solid cube we require

$$\frac{bc}{d^2d_1d_2d_3} \times \frac{ac}{d^2d_1d_2d_3} \times \frac{ab}{d^2d_1d_2d_3} = \frac{(abc)^2}{(d^2d_1d_2d_3)^3} \text{ cuboids.} \blacksquare$$

Remark:

In proposition 3.2, if $(d_2, c_1) = (d_3, c_1) = (d_1, b_1) = 1$.

Then number of cuboids required to form smallest cube is $(abc)^2$

Let X be a cube formed from cuboids each of size *axbxc*. Let r, s, t be a number of cuboids along the sides of the cube X. As each edge of X is same, we have

$$a_r = b_s = c_t$$
, i.e. $d_1d_3 a_1r = d_1d_2b_1s = d_2d_3c_1t$

 \Rightarrow d₃ a_1 r = d₂b₁s, d₁ a_1 r = d₂c₁t

Now $d_2b_1|d_3a_1r$ with $(d_2, d_3) = (d_2, a_1) = 1$, so $(d_2, d_3a_1) = 1$,

 $(b_1, a_1) = 1 = (b_1, d_3) = 1$, so $(b_1, d_3a_1) = 1$ (See theorem 3.1)

and hence $(d_2b_1, d_3a_1) = 1$, which gives by 1.1, $d_2b_1|r$.

Also we have $c_1|d_1a_1r$ and $(c_1, d_1) = (c_1, a_1) = 1$,

i.e. $(c_1, d_1a_1) = 1$, so again by 1.1, $c_1|r$.

 $d_2b_1|r, c_1|r$ and $(b_1, c_1) = 1$, $(d_2, c_1) = 1$ i.e. $(d_2b_1, c_1) = 1$

gives $d_2b_1c_1|r$ (by 1.1). Now $\frac{bc}{d^2d_1d_2d_2} = d_2b_1c_1$ divides r.

Thus
$$\frac{bc}{d^2d_1d_2d_8}$$
 ≤ r.

Using $(d_3, c_1) = (d_1, b_1) = 1$, we get

$$\frac{ac}{d^2d_1d_2d_3} = d_3a_1c_1 \le s, \frac{ab}{d^2d_1d_2d_3} = d_1a_1b_1 \le t.$$

Hence $\frac{abc^2}{(d^2d, d_2d_3)^3} \le rst = Number of cuboids in X.$

This proves that the smallest cube is formed with $\frac{(abc)^2}{(d^2d, d_dd_d)^2}$ cuboids.

If $d_1 = d_2 = d_3 = 1$ then $\frac{abc^2}{(d^2d_1 d_2 d_3)^3} = \frac{abc^2}{(d)^6}$

3.4 Corollary [Application 2]

Let a, b, $c \in \mathbb{N}$, d = (a, b, c), $d_1 = (\frac{a}{d}, \frac{b}{d})$, $d_2 = (\frac{b}{d}, \frac{c}{d})$, $d_3 = (\frac{a}{d}, \frac{c}{d})$ and $a = dd_1 d_3 a_1$, $b = dd_1 d_2 b_1$,

 $c = dd_2d_3c_1$. If one of the following holds:

 $(d_1, a_1) = 1, (d_1, b_1) = 1, (d_2, b_1) = 1, (d_2, c_1) = 1, (d_3, a_1) = 1,$ $(d_3, c_1) = 1$

then using $\frac{(abc)^2}{(d^2d_1d_2d_3)^3}$ cuboids, each of size $a \ge b \ge c$ (cubic units), we can form the smallest cube without breaking any cuboid.

Hint: In the above remark, for
$$(d_2, c_1) = 1$$
, we have $\frac{bc}{d^2 d_1 d_2 d_3} \leq d_2 d_1 d_2 d_3$

r, i.e.,
$$\frac{abc}{d^2d_1d_2d_3} ≤ a_r$$

$$\Rightarrow \left(\frac{abc}{d^2d_1d_2d_3}\right)^3 \le (ar)^3 = \text{Volume of the cube X}$$

From this corollary 3.4 follows.

Illustration 2: Determination of the number of cuboids, each of size 100x210x375 (cubic units) to form the smallest solid cube without breaking any cube.

For
$$a = 100 = 5 \times 2 \times 5 \times 2$$
, $b = 210 = 5 \times 2 \times 3 \times 7$, $c = 375 = 5 \times 3 \times 5 \times 5 \in \mathbb{N}$.

We have d = (a, b, c) = 5, $d_1 = (\frac{a}{d'a}) = 2$, $d_2 = (\frac{b}{d'a}) = 3$, $d_3 = (\frac{a}{d'a}) = 5$, $a_1 = 2$, $b_1 = 7$, $c_1 = 5$, with d_1 , d_2 , d_3 are pairwise relatively prime and a_1 , b_1 , c_1 pairwise relatively prime with $(a_1, d_2) = (b_1, d_3) = (c_1, d_1) = 1$ (verifies theorem 3.1).

Note that $(d_1, a_1) = 2$, $(d_1, b_1) = 1 = (d_2, b_1) = (d_2, c_1) = (d_3, a_1) = 1$ and $(d_3, c_1) = 5$.

So by corollary 3.4; to form smallest cube from cuboids, each of size $a \times b \times c$ (cubic units) without breaking any cuboid requires number of cuboids

$$\frac{abc}{(d^2d_1d_2d_3)^8} = \frac{100 \times 210 \times 375}{(5^2 \times 2 \times 3 \times 5)^8} = \frac{(7875000)^2}{(750)^8} = 147000.$$

3.5 Corollary. Let a, b, c $\in \mathbb{N}$, d = (a, b, c) and a = da₁, b=dc₁, c=dc₁ with

$$(a_1, b_1) = (b_1, c_1) = (a_1, c_1) = 1.$$

Using $\frac{abc^2}{(d)^6}$ cuboids, each of size a xbxc, we can form
smallest solid cube. For any $k \in \mathbb{N}$, using $\frac{k^3(abc)^2}{(d)^6}$

such cuboids we form a solid cube.

Illustration 3: To form smallest cube from cuboids each of size $10 \times 6 \times 4$, we require

$$\frac{(10\times6\times4)^2}{(10,6,4)^6} = \frac{(10\times6\times4)^2}{2^6} = (5\times3\times2)^2 = 900.$$

CONCLUSION:

Using proposition 3.1 and corollary 3.4, we can solve problems of constructing a square floor or a cube from identical tiles (cuboids)

References:

[1] Apostol Tom M., Introduction *to Analytic Number Theory*, Springer (First Indian Reprint, 2010).

[2] Burton David M., Elementary *Number Theory*, 6th Edition, Tata McGraw Hill, 2007.

[3] Rosen Kenneth H., Elementary *Number Theory*, 6th Edition, Pearson, 2015.