# IMPACT OF GROUND WATER ON FOREST PRODUCTIVITY IN HALIYAL TALUKA USING RS AND GIS TECHNIQUES

e-ISSN: 2395-0056

p-ISSN: 2395-0072

<sup>1</sup> Arjun .G .Koppad, <sup>2</sup>Malini P. J

<sup>1</sup>Professor and University Head (NRM), UAS DHARWAD, COF SIRSI 581401 <sup>2</sup>Research Associate, NISAR Project (NRM) UAS DHARWAD, COF SIRSI 581401

\*\*\*

**Abstract:** The study was conducted in Haliyal taluka to assess the impact of ground water on forest productivity and carbon sequestration. The watershed delineation and drainage assessment was done using cartosat dem downloaded from the Bhuvan website; data was processed in ArcGIS software. The field data for assessing forest productivity was done through transact survey in catchment and command area of Tattiyal dam. There are 4 plots each in catchment and command area were laid out each plot with 20x20 mts. The growth parameters such as tree height and diameter were recorded in all the 8 plots. The results indicated that the forest productivity in catchment area was 301.25m³/Ha whereas in command area the volume was 710.56 m³/ha. The carbon sequestration was 147.61 and 348.17 t/ha in catchment and command area respectively. Soil organic Carbon was also estimated and the results indicated that the organic carbon of soil in catchment and command area was 1.77 and 2.04% respectively. The LULC, watershed mapping, slope, contour, NDVI, soil moisture and stream order mapping was done in ArcGIS software. Based on this study is concluded that the water resource helps in command area to maintain the water table and provides the moisture to the tree growth as indicated by highest biomass in command area.

Keywords: catchment, command area, water resource, Forest productivity, LULC and drainage map.

### I. INTRODUCTION

Forests provide a wide range of economic and social benefits, such as employment, forest products and protection of sites of cultural value (FAO, 2006). Forests provide a wide range of goods and services. Goods include timber, fuel-wood, as well as food products and fodder. With respect to services is concerned forests and trees play a important role in conservation of eco- systems, in maintaining quality of water, and in preventing or reducing the severity of floods, erosion, and drought.

Forest play an important role in water balancing, by holding the rain water, reducing the runoff, helps in infiltration and increases the ground water table. The natural forest as such maintains the ecological balance in terms of soil, water and vegetation. Anthropogenic pressure on forest leads to degradation and deforestation, which in-turn accelerates the erosion, loss of natural resources and final affects on climate change.

Water is most important source for plant or tree growth, the tree species adopt itself for the moisture and behaves as deciduous tree or evergreen tree. Most of the places where rainfall is low, less than 800 mm the some of the tree species would be of deciduous in nature if the same species is grown in such climatic situation where rainfall is more it behave like semi or evergreen in nature.

The water storage play an important role in maintaining the water table which in-turn help tree species in the forest for better growth and productivity. In the present scenario of climate change higher growth and productivity of forest is very much needed in order to maintain the ecological balance. The higher productivity of tree species sequesters the atmospheric carbon and thereby reduces the  $CO_2$  concentration in the atmosphere.

The Soil Organic Carbon (SOC) stock acts as a major part of the terrestrial carbon reservoir as soils contain more organic carbon than the atmosphere with a storage of about 1500 Pg to 2000 Pg C (1 Pg =1 billion tonnes) in the top 100 cm depth layer in the world soils (Batjes, 1996). The carbon pool in soils is twice the amount present in the atmosphere; any changes in soil carbon pool can affect the composition of the atmosphere significantly. The carbon sequestration in the soil is also depends on the forest tree growth and its productivity. Carbon sequestration in tree species is higher in high productivity lands. (Roger and Brent, 2012, Watson *et al.*,2000) Keeping these points in view the experiment was planned in catchment and command area of Tattihalla dam to assess the following objectives

- 1. To assess the impact of ground water source on productivity of forest.
- 2. To study the impact of water source on carbon sequestration in forests.

© 2018, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1436

## International Research Journal of Engineering and Technology (IRJET)

IRJET Volume: 05 Issue: 08 | Aug 2018 www.iriet.net p-ISSN: 2395-0072

e-ISSN: 2395-0056

### II. MATERIALS AND METHOD.

### Study area:

The study was conducted in Haliyal taluk, one of the water resource dams called Tattihalla dam where in catchment and command area of the dam was considered for taking the observations on forest tree species. The map of Halival taluka is given in fig. 1.

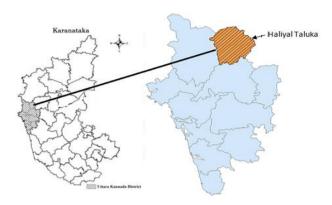



Fig.1 Map showing the study area (Haliyal Taluka)

### **Collection of Data:**

The watershed delineation and drainage assessment was done using Cartosat dem downloaded from the Bhuvan website; data was processed in ArcGIS software.

Field data collection: In the catchment area of Tattihalla dam of Haliyal taluka, transact was laid out, there were four plots with size 20 X 20m was laid out randomly over the catchment area and observation on growth parameters i.e girth at breast height (GBH) at 1.37m above the ground level and tree height was recorded with diameter tape and Ravi altimeter respectively in all the plots. The plot latitude and longitude and elevation were recorded with GPS. Similarly four plots were selected in command area from just below the dam and away from the dam at downstream side and recorded all the parameters as did in catchment area.

The basal area was determined by the formuia (Chaturvedi and Khanna,1984).

Basal area =  $\pi d^2/4$  or  $g^2/4\pi$ . The total wood volume was determined by using formula

Volume = Total height x Basal area x Form factor. (Chaturvedi and Khanna, 1984)

### **Biomass:**

Above and below ground biomass was calculated separately by using standard formulae's and expressed in tonnes per hectare.

Above ground biomass (tonnes /ha) = Volume of tree X Density of wood (Mac dicken ,1997)

Below ground biomass (tonnes/ha)=Above ground biomass X0.26 (Ravindranath et al ,2008)

### Density of wood:

Wood sample of square shaped was cut from each species and weighed in weighing balance and also volume of that square shaped wood sample was calculated by using formulae volume of cube

Density of wood (g/cc) = Mass of wood sample \_\_\_\_\_ Volume of that wood sample

### International Research Journal of Engineering and Technology (IRJET)

IRJET Volume: 05 Issue: 08 | Aug 2018 www.irjet.net p-ISSN: 2395-0072

e-ISSN: 2395-0056

### Carbon Sequestration (tonnes/ha)

The above ground biomass of standing trees was estimated to work out the amount of carbon sequestration by reducing the total biomass yield to its 50% or converting biomass by multiplying 0.5 (Mac Dicken., 1997).

Carbon sequestration=Total biomass(AGB+BGB) x0.5

### Soil parameters`

Soil samples was collected from representative sample plots from 0-30 cm depth after scraping away the litter. The soil samples were air dried, powdered and allowed to pass through 2mm sieve and analyzed for chemical properties. The soil properties such as Electrical Conductivity who was analysed by Conducto metric method.

Bulk-density by Core Sampler method, pH by using Potentiometric method (Jakson,1973) and soil Organic carbon (%) was estimated by Wet oxidation method (Walkely and Black, 1934)

### III. RESULT AND DISCUSSION:

The field data recorded on tree species both at catchment (Upstream) and command (Down stream) area is given in table 1 and 2.

On upstream area i. e in the catchment area of Tattihall dam there are seven tree species with different numbers in each species, majority of the trees were teak, Terminelia and Lagestromia species. The average volume of wood was 301.25 m<sup>3</sup>/ha. The plot to plot wood volume variation was from m<sup>3</sup>/plot. The elevation of the plots was from 484 m to 501 m in the catchment area.

On downstream side i.e in command area of Tattihalla dam there is more number of species present as compared to catchment area. The total volume in transact plot was varied from 17.813 to 47.840 m $^3$ /plot. The average wood volume in catchment area was 710 m $^3$ /ha. The results indicated that more than double volume of wood was recorded in command area as compared to catchment area; this variation in wood volume was due to the influence of water source stored in the dam. The study clearly indicated that water storage in forest is very much essential for the growth of tree and higher wood volume.

Table 1. Tree species volume (m³) on upstream side of the water source

|     | TREE SPECIES                        | Volume of tree species (m <sup>2</sup> ) |                          |                                |                               |
|-----|-------------------------------------|------------------------------------------|--------------------------|--------------------------------|-------------------------------|
| SL  | Location (lat and long)             | N15 08 30.4,<br>E74 46 42.9              | N150845.5, E<br>744639.6 | N 15 08 43.8, E<br>74 46 3 6.4 | N 15 08 46.4, E<br>74 46 36.1 |
| NO  | Elevation m                         | 490                                      | 484                      | 493                            | 501                           |
| 1.  | Tec tona grandis                    | 0.043                                    | 1.875                    | 1.552                          | 0.612                         |
| 2.  | Tec tona grandis                    | 0.096                                    |                          | 1.886                          | 0.019                         |
| 3.  | Tec tona grandis                    | 0.082                                    |                          | 3.406                          | 0.078                         |
| 4.  | Tec tona grandis                    | 0.048                                    |                          | 2.441                          | 1.321                         |
| 5.  | Tec tona grandis                    | 0.015                                    | 0.118                    |                                | 0.597                         |
| 6.  | Tec tona grandis                    | 0.032                                    | 1.648                    |                                | 2.483                         |
| 7.  | Tec tona grandis                    | 0.078                                    | 0.330                    |                                | 0.126                         |
| 8.  | Tec tona grandis                    | 0.060                                    | 0.432                    |                                |                               |
| 9.  | Tec tona grandis                    | 0.115                                    |                          |                                |                               |
| 10. | Tec tona grandis                    | 0.060                                    |                          |                                |                               |
| 11. | Tec tona grandis                    | 0.100                                    |                          |                                |                               |
| 12. | Tec tona grandis                    | 0.012                                    |                          |                                |                               |
| 13. | Terminelia panic ulata              | 8.00.0                                   | 1.321                    |                                | 0.465                         |
| 14. | Terminelia panic ulata              | 0.002                                    | 0.946                    |                                | 0.007                         |
| 15. | Terminelia panic ulata              | 0.005                                    |                          |                                | 0.012                         |
| 16. | Terminelia panic ulata              | 0.232                                    | 0.107                    |                                | 0.050                         |
| 17. | Terminelia paniculata               | 0.060                                    |                          |                                |                               |
| 18. | Terminelia tom entosa               | 7.545                                    | 1.296                    | 1.652                          |                               |
| 19. | Terminelia tom entosa               |                                          | 1.166                    |                                |                               |
| 20. | Lagestromia lanciolata              | 0.061                                    | 0.383                    | 1.438                          | 0.118                         |
| 21. | Lagestromia lanciolata              | 0.023                                    | 0.524                    | 0.180                          | 0.730                         |
| 22. | Lagestromia lanciolata              |                                          |                          | 2.827                          | 0.014                         |
| 23. | Lagestromia lanc iolata             |                                          |                          |                                | 0.091                         |
| 24. | Lagestromia lanciolata              |                                          |                          |                                | 0.070                         |
| 25. | Lagestromia lanciolata              |                                          |                          |                                | 0.140                         |
| 26. | Melia dubia                         | 0.094                                    |                          | -                              | -                             |
| 27. | Xy lia xy loc arpa                  |                                          |                          |                                | 0.033                         |
| 28. | Xy lia xy loc arpa                  |                                          |                          |                                | 0.060                         |
| 29. | Unknown                             | 6.048                                    |                          | ·                              |                               |
|     | Total                               | 14.819                                   | 10.992                   | 15.383                         | 7.025                         |
|     | Average volume m <sup>2</sup> /plot | 12.05m3 / plot                           |                          |                                |                               |
|     | Volume m² /ha                       | 301.25                                   |                          |                                |                               |
|     |                                     |                                          |                          |                                |                               |

# International Research Journal of Engineering and Technology (IRJET)

Volume: 05 Issue: 08 | Aug 2018 www.irjet.net p-ISSN: 2395-0072

e-ISSN: 2395-0056

Table 2. Tree species volume (m2) on downstream side of the water source

|                   | TREE SPECIES                         | Volume of tree species (m²) |               |               |              |
|-------------------|--------------------------------------|-----------------------------|---------------|---------------|--------------|
|                   |                                      | N 15 07 0.09,E              | N 15 07 03.4, | N15 07 041,   | N15 07 0.51, |
| SL                | Location (lat and long)              | 74 46 9.31                  | E 074 46 7.69 | E 074 46 7.23 | E074 46 637  |
| NO                | Elevation m                          | 443                         | 460<br>0.205  | 455           | 440          |
| 1.                | Tec tona grandis<br>Tec tona grandis | 1.389                       | 0.056         | 1.738         | 0.097        |
| 2.                | _                                    | 1.534                       |               | 1.862         | 0.700        |
| 3.                | Tec tona grandis                     | 1.273                       | 0.168         | <b>I</b>      | 1.669        |
| 4.                | Tec tona grandis                     | 1.234                       | 3.006         | 1             | 1.456        |
| 5.                | Tec tona grandis                     | 1.370                       | 3.006         | 1             | 0.027        |
| 6.                | Tec tona grandis                     | 0.349                       |               | <b>I</b>      | 6.008        |
| 7.                | Tec tona grandis                     | 1.048                       |               | 1             | 1.885        |
| 8.                | Tec tona grandis                     | 1.210                       |               | 1             |              |
| 9.                | Tec tona grandis                     | 1.188                       |               |               |              |
| 10.               | Terminelia panic ulata               |                             | 1.484         | 0.066         | 0.465        |
| 11.               | Terminelia panic ulata               | l                           | 0.524         | 1             | 0.168        |
| 12.               | Terminelia panic ulata               |                             | 5.655         |               | 0.060        |
| 13.               | Terminelia p anic ulata              | l                           | 0.066         | 1             | 0.026        |
| 14.               | Terminelia p anic ulata              | l                           |               | 1             | 0.042        |
| 15.               | Terminelia tom entosa                |                             | 4.970         | 2.679         | 7.435        |
| 16.               | Terminelia tom entosa                |                             | 0.436         | 4.777         |              |
| 17.               | Terminelia tom entosa                | l                           | 6.168         | 1             |              |
| 18.               | Lagestromia lanciolata               |                             | 0.405         | 1.630         | 1.162        |
| 19.               | Lagestromia lanciolata               |                             | 0.893         |               |              |
| 20.               | Xy lia xy loc arpa                   |                             | 1.048         | 1.852         | 0.021        |
| 21.               | Xy lia xy loc arpa                   |                             |               | 0.417         | 0.028        |
| 22.               | Xy lia xy loc arpa                   |                             |               | 1.372         | 0.067        |
| 23.               | Bahunia species                      | 0.491                       |               | 3.183         |              |
| 24.               | Bahunia species                      | 1.016                       |               | 1             |              |
| 25.               | Bahunia species                      | 0.368                       |               |               |              |
| 26.               | Dalbe ergialatifolia                 | 0.436                       |               |               |              |
| 27.               | Dalbeergialatifolia                  | 0.896                       |               | 1             |              |
| 28.               | Ficus glomaruta                      | 3.542                       |               |               |              |
| 29.               | Adina cardifolia                     | 1.520                       |               |               |              |
| 30.               | Vateria indic a                      | l                           | 0.103         | 0.129         |              |
| 31.               | Vateria indica                       |                             | 0.762         | 1.317         |              |
| 32.               | Adina cardifolia                     |                             | 21.714        |               |              |
| 33.               | Syzizium cumini                      | l                           | 0.070         | 1             |              |
| 34.               | Vezria indica                        | l                           |               | 0.463         |              |
| 35.               | Vezria indica                        |                             |               | 0.062         |              |
| 36.               | Vezria indica                        | l                           |               | 0.143         |              |
| 37.               | Vezria indica                        | l                           |               | 0.659         |              |
| 38.               | Unknown                              |                             |               | 1.190         | 3.185        |
|                   | Total                                | 17.813                      | 47.840        | 23.538        | 24.512       |
|                   | Avera                                | ge volume m³/plo            | 28.43         | •             |              |
| Volume m² /ha 710 |                                      |                             |               |               |              |

The soil samples collected from catchment and command area from all the transact plots were analysed. The results are given in table 3. The results indicated that PH is slightly increased in command area towards neutral from acidic. The electric conductivity was increased from 95.55 to 136.013 for  $\mu$ \$/dm. The bulk density was increased slightly and organic carbon in soil was also increased from 1.87 to 2.22. The higher organic carbon returned to the soil via litter fall is an important source of nutrients for vegetation. Organic carbon content in surface soil is higher command area due to highe leaf litter and less soil erosion (Dutta and Singh,2007).

Table. 3 Soil properties in catchment and command area of Tattihalla Dam

| Places         | PH   | EC(μŚ/dm) | Bulk density (g/cc) | Organic carbon % |
|----------------|------|-----------|---------------------|------------------|
| Catchment area | 5.69 | 95.55     | 1.13                | 1.87             |
| Command area   | 6.43 | 136.01    | 1.33                | 2.22             |

Based on the volume of the wood, the carbon sequestration was estimated as shown in table 4. It was found that the carbon sequestration was 147.61 tonnes /ha in catchment area where as it was 348.17 tonnes /ha in command area. There was a significant increase in the carbon sequestration in tree species present in command area. This was due to the influence of storage water in the dam.

| Table.4: Wood Volume and   | l carbon coquestration    | a ac influenced b   | www.tor.rocourco |
|----------------------------|---------------------------|---------------------|------------------|
| rable.4: wood volulle allo | i cai boii sequesti atioi | i as illilueliceu b | y water resource |

| Sl.No | Place          | Volume m³/ha | Carbon sequestration t/ha |
|-------|----------------|--------------|---------------------------|
| 1     | Catchment area | 301.25       | 147.61                    |
| 2     | Command area   | 710.56       | 348.17                    |

Based on the supervised classification the different LULC classes and their area details are shown the Table.5 and Fig.2. The results indicated that the forest covers an area of about (47.31%) dense forest and followed by Agriculture (26.15%) and other classes are shown in the Table.5.

Table.5. Land use and Land cover different classification area details in Ha

| Land cover features | Area in Ha | % Area |
|---------------------|------------|--------|
| Water bodies        | 2751.52    | 3.19   |
| Settlement          | 1296.64    | 1.50   |
| Agriculture         | 22498.2    | 26.15  |
| Open land           | 1876.22    | 2.18   |
| Horticulture        | 1905.48    | 2.21   |
| Sparse forest       | 14984.6    | 17.42  |
| Dense forest        | 40693.8    | 47.31  |
| Total               | 86006.46   | 100    |

The NDWI map is shown in Fig.3. The results indicated that water content present in various land features as indicated by the NDWI which is varies from -0.561 to 0.276.

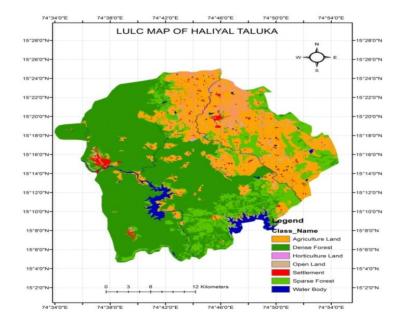



Fig.2 Land use and Land cover map of Haliyal Taluka

e-ISSN: 2395-0056

p-ISSN: 2395-0072

IRJET Volume: 05 Issue: 08 | Aug 2018 www.irjet.net

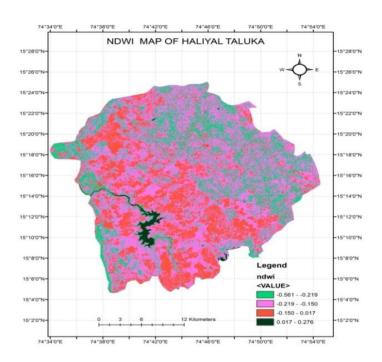



Fig.3 Normalised difference water Index map of Haliyal Taluka

The NDVI map is shown in Fig.4 indicating the higher vegetation density with higher NDVI value towards open land and water body, the NDVI value ranges from 0.663 to -0.157

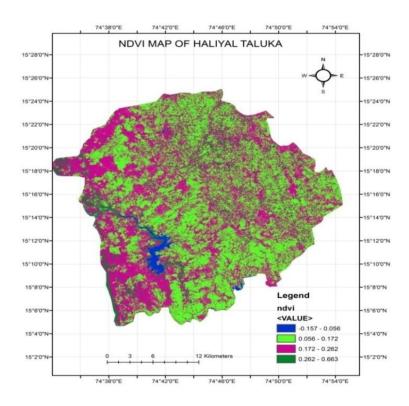



Fig.4 Normalised difference vegetation Index map of Haliyal Taluka

e-ISSN: 2395-0056

p-ISSN: 2395-0072

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 www.iriet.net p-ISSN: 2395-0072

The watershed elevation and drainage map is shown in Fig.5 and 6. The elevation in the Haliyal taluka varies from -9 to 599 m. The Tattihalla dam is locate at the elevation of 450-460 m. The data regarding the forest production was estimated on upstream and downstream side of the dam as indicated in table 1 and 2. The stream flow is very important for the collection of water in the dam. The storage water in the dam is trough tout the year hence there is always provision to maintain the water table in the downstream side of the dam which has helped for the tree growth much better in command area as compared to the catchment area. The results indicated that water resource especially the dams play an important role in maintaining forest growth and productivity much higher and it helped to avoid the loss of natural resources. The watershed delineated from DEM indicated the number streams in Haliyal taluka are about 1251 in numbers in different watershed of the taluka.

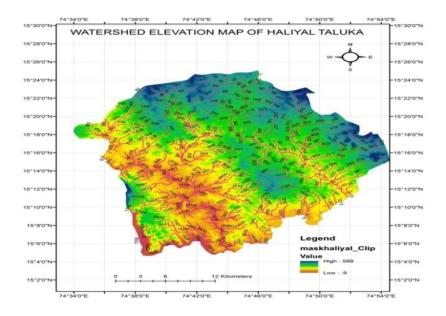



Fig.5 Watershed elevation map with drainage lines of Haliyal Taluka

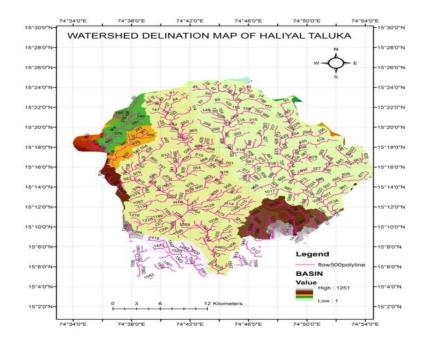



Fig.6 Watershed delineation along with drainage lines map of Haliyal Taluka

e-ISSN: 2395-0056

p-ISSN: 2395-0072

### CONCLUSION

Based on the study it is concluded that the water storage dams play an important role for the forest tree growth and productivity. The Dam water helps in maintaining the water availability to the tree which in-turn helps for growth of trees in command area. The productivity of tree in command area is much higher as compared to catchment area. The spatial analyst tools are the most important for preparation of various maps related to watershed hydrology.

### **ACKNOWLEDGEMENT:**

Authors gratefully acknowledge the UAS, Dharwad and ISRO, Ahmadabad for financial support for conducting the research study in Uttara Kannada district.

### **REFERENCES:**

- [1]. Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. Soil Science. 47(2): 151–163.
- [2]. Black C. A 1965, Assessment of soil fertility variation in different land use and management practices in Maybar watershed, South Wollo Zone north Ethiopia. *International journal of environmental bioremediation and biodegradation* 3(1):15-22
- [3]. Chaturvedi and Khanna 1984, Carbon sequestration potential of tree borne oilseeds for dryland areas of karnataka. International *journal of forestry and crop improvement*. 3(1):24-26.
- [4]. Dutta, M. and Singh,N.P.,2007,Growth characteristics of multipurpose tree species, crop productivity and soil properties in agro forestry systems under subtropical humid climate in *India.J.For.Res.*,18(4):261-270.
- [5]. FAO 2006 the state of food and agriculture, food and agriculture organisation of the united nations Rome 2006
- [6]. Jackson .M.L 1973, Soil chemical analysis of chlorocetanilide herbicide interaction across soil type. *Open journal of soil sci.*, 5(4).
- [7]. Mac Dicken K. G 1997, the influence of altitude and management on carbon stock quantities in rungwe forest, southern highland of Tanzania. *Open journal of eco.*, 2(4).
- [8]. Ravindranath, N.H and Oswald. M 2008, Harnessing REDD+opportunities for forest conservation an carbon stock enhancement in the North eastern states of India. *National science*, 5(3).
- [9]. Roger, Sedjo and Brent, Sohngen. 2012. Carbon Sequestration inForests and Soils. *Annual Review of Resource Economics*. 4:127-144.
- [10]. Walkley, A. and Black, I. A. 1934. An examination of Degtjareff method for determining organic carbon in soil: effect of variation in digestion condition of inorganic soil constitution. *Soil Sci.*, 63: 251-263.
- [11]. Watson, R.T. Noble, I.R. Bolin, B. Ravindranathan, N. H. and Verardo, D.J. 2000. Land Use, Land Change and Forestry. Special: report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp. 111-161.