GLOBAL ACCURATE DOMINATION IN JUMP GRAPH

N. Pratap Babu Rao¹, Sweta .N²

¹Department of mathematics S.G. degree College KOPPAL(Karnataka)INDIA
²Department of mathematics veerasaiva college Ballari (Karnataka)INDIA

ABSTRACT: A dominating set D of a jump graph is an accurate dominating set if |V-D| has no dominating set of cardinality |D|. An accurate dominating set D of a graph G is also an accurate dominating set of Ḡ. The global accurate dominating number \(\sqrt{ga}(J(G)) \) are obtained and exact values of \(\sqrt{ga}(J(G)) \) for some standard graphs are found. Also a Nordhaus-Gaddum type results established.

Key words: accurate dominating set, global accurate dominating set, global accurate domination number.

Mathematics subject-Classification:05C

I Introduction

All graphs considered here are finite, undirected without loops and multiple edges. Any undefined terms in this paper may found in kulli [1]

A set D of vertices in a jump graph is a dominating set of J(G), if every vertex not in D is adjacent to a vertex in D. The domination number of a jump graph is denoted by \(\sqrt{j(G)} \) is the minimum cardinality of a dominating set in J(G).

A dominating set D of a jump graph J(G) is accurate dominating set. If V(J(G)) - D has no domination set of cardinality |D|. The accurate domination number \(\sqrt{a}(J(G)) \) of J(G) is the minimum cardinality of an accurate dominating set. This concept was introduced by kulli and kattimani in [2]

A dominating set D of ajump graph J(G) is a global dominating set. If D is also a dominating set of J(Ḡ). The global domination number \(\sqrt{g}(J(G)) \) of J(G) is the minimum cardinality of a global dominating set [5].

In [4] kulli and kattimani introduced the concept of global accurate domination as follows.

An accurate dominating set D of a graph G is a global accurate dominating set, if D is also an accurate dominating set of Ḡ. The global accurate domination number \(\sqrt{ga}(G) \) of G is the minimum cardinality of a global accurate dominating set. Analogously, a set d of a jump graph J(G) is a global accurate dominating set if D is also an accurate dominating set of J(Ḡ). The global accurate domination number \(\sqrt{ga}(J(G)) \) of J(G) is minimum cardinality of a global accurate dominating set.

Let \(\lfloor x \rfloor \) denote the greatest integer less than or equal to x. A \(\sqrt{a} \)-set is minimum accurate dominating set.

2. Results

We characterize accurate dominating set which are global accurate dominating sets.

Theorem 1: An accurate dominating set D of a jump graph J(G) is a global accurate dominating set if and only if the following condition holds.

For each vertex v\(\in V(J(G))-D \), there exists vertex u \(\in D \) such that u is not adjacent to v. There exists a vertex w \(\in D \) such that w is adjacent to all vertices in V(J(G))-D.

Theorem2. Let J(G) be a jump graph such that neither J(G) nor J(Ḡ) has an isolated vertex, Then

\(\sqrt{ga}(J(G)) = \sqrt{ga}(J(Ḡ)) \)
\(\sqrt{a}(J(G)) + \sqrt{a}(J(\bar{G})) \leq \sqrt{a}(J(G)) \leq \sqrt{a}(J(\bar{G}))\)

Theorem 3. Let \(J(G)\) be a jump graph such that neither \(J(G)\) nor \(J(\bar{G})\) have an isolated vertex then

\[\sqrt{a}(J(G)) \leq \sqrt{ga}(J(G)) \]

Proof: Every global accurate dominating set is an accurate dominating set then above inequality holds.

Theorem 4: Let \(j(G)\) be a jump graph such that neither \(j(G)\) nor \(j(\bar{G})\) have an isolated vertex then

\[\sqrt{a}(j(G)) \leq \sqrt{ja}(j(G)) \]

Proof: Every global accurate dominating set is an accurate dominating set then above inequality holds.

Exact values of \(\sqrt{ga}(j(G))\) for some standard graphs are given in Theorem 5.

Theorem 5:

- \(\sqrt{ga}(J(K_p)) = p\)
- \(\sqrt{ga}(J(C_p)) = \left\lceil \frac{p}{2} \right\rceil + 1\) if \(p \geq 3\)
- \(\sqrt{ga}(J(p_p)) = \left\lceil \frac{p}{2} \right\rceil + 1\) if \(p \geq 2\)
- \(\sqrt{ga}(J(K_{m,n})) = m+1\) if \(m \leq n\)
- \(\sqrt{ga}(J(W_p)) = \left\lceil \frac{p}{2} \right\rceil + 1\) if \(p \geq 5\)

For any regular jump graph \(J(G) = \left\lceil \frac{p}{2} \right\rceil + 1\) if \(p \geq 2\)

Now we obtain an upper bound for \(\sqrt{ga}(J(G))\)

Theorem 6. Let \(J(G)\) has two non adjacent vertices \(u\) and \(v\) such that \(u\) is adjacent to some vertex in \(V(J(G)) - u\) this implies that \(V(J(G)) - \{u\}\) is a global accurate dominating set of \(G\). Thus

\[\sqrt{ga}(J(G)) \leq |V(J(G)) - \{u\}| \] or

Proof: Suppose result holds. Assume that \(J(G) \neq K_p\). Then \(J(G)\) has at least three vertices \(u, v, \) and \(w\) such that \(u\) and \(v\) are adjacent and \(w\) is not \(u\). Then this implies that \(V(J(G)) - \{u\}\) is a global accurate dominating set of \(J(G)\). This proves necessity.

Converse is obvious.

Theorem 8. Let \(D\) be an accurate dominating set of \(J(G)\) if there exists two vertices \(u \in V(J(G)) - D\) and \(v \in D\) such that \(u\) is adjacent only to the vertices of \(D\) and \(v\) is adjacent to the vertices of \(V(J(G)) - D\). Then

\[\sqrt{ga}(J(G)) \leq \sqrt{a}(J(G)) + \]

Proof: Let \(D\) be a \(\sqrt{a}\)-set of \(J(G)\) if there exists a vertex \(u \in V(J(G)) - D\), such that \(u\) is adjacent only to the vertices of \(D\) then \(D \cup \{u\}\) is a global accurate dominating set of \(G\), thus

\[\sqrt{ga}(J(G)) \leq |D \cup \{u\}| \]

\[\leq |D| + 1 \]
Or \[\sqrt{g_a}(J(G)) \leq \alpha_0(J(G)) + 1 \]

In jump graph \(J(G) \), a vertex and an edge incident with it are said to cover each other. A set of vertices that cover all the edges of \(J(G) \) is a vertex cover of \(J(G) \). The vertex covering number \(\alpha_0(J(G)) \) of jump graph \(J(G) \) is the minimum number of vertices in a vertex cover. A set \(S \) of vertices in \(J(G) \) is independent if no two vertices in \(S \) are adjacent. The independence number \(\alpha_0(J(G)) \) of \(J(G) \) is the maximum cardinality of an independent set of vertices. The Clique number \(\beta_0(J(G)) \) of \(J(G) \) is the maximum order among the complete sub graph of \(J(G) \).

Theorem 9: Let \(J(G) \) be a jump graph without isolated vertices then

\[\sqrt{g_a}(J(G)) \leq \alpha_0(J(G)) + 1 \]

Proof: Let \(s \) be a maximum independent set of vertices in \(J(G) \). Then for any vertex \(v \in S \), \{ \(V(J(G)) - S \) \} \cup \{v\} is a global accurate dominating set of \(J(G) \) thus

\[\sqrt{g_a}(J(G)) \leq | \{ V(J(G)) - S \} \cup \{v\}| \]

\[\leq | V - S | + 1 \]

\[\leq p - \beta_0(J(G)) + 1 \]

Or \[\sqrt{g_a}(J(G)) \leq \alpha_0(J(G)) + 1 \]

We obtain a Nordhus - gaddum type result

Theorem 10: Let \(J(G) \) be a jump graph such that neither \(J(G) \) nor \(\overset{\sim}{J(G)} \) have an isolated vertex Then,

\[\sqrt{g_a}(J(G)) + \sqrt{g_a}(\overset{\sim}{J(G)}) \leq p + \sqrt{\alpha}(J(G)) - w(J(G)) + 2 \]

Proof: By theorem 9 \[\sqrt{g_a}(J(G)) \leq \alpha_0(J(G)) + 1 \]

Therefore \[\sqrt{g_a}(J(G)) \leq \alpha_0(J(G)) + 1 \]

\[\leq p - \beta_0(J(G)) + 1 \]

\[\leq p - w(J(G)) + 1 \]

Hence \[\sqrt{g_a}(J(G)) + \sqrt{g_a}(\overset{\sim}{J(G)}) \leq p + \sqrt{\alpha}(J(G)) - w(J(G)) + 2 \]

REFERENCES

