A 2-Dimensional Optical Router for Optical Networks - on - Chip.

Abhinav Shukla¹, Amritanshu², Diksha Sharma³, Prof. Dr. S.P. Gaikwad⁴, Prof. S.P. Tondare⁵

¹²³ Dept. of Electronics Engineering, Bharti Vidyapeeth University, Maharashtra, India
⁴⁵ Prof. Dr. S.P. Gaikwad, Dept. of Electronics Engineering, Bharti Vidyapeeth University, Maharashtra, India

Abstract – ONoC (Optical Network - on - chip) based on on-chip optical interconnects and routers having significant bandwidth and power advantages. In this work, we design a non-blocking low power consumption and efficient 5*5 2-D Optical Router architecture based on mesh topology, X-Y Routing and parallelism techniques. Through such techniques, it is possible to reduce number of wavelength, routing elements and crosstalk, thereby reducing insertion loss and improving power consumption. The fabrication of a five-port optical router composed of fifteen microring-resonator-based switching elements, five optical waveguides and thirteen waveguide crossings. Hence, the obtain insertion loss is 0.65dB.

Key Words: Network-on-chip (NoC) , Optical Router, Micro-resonator.

1.INTRODUCTION

NoC (network-on-chip) is an emerging wireless communication subsystem on an integrated circuit typically between intellectual property (IP) cores in a processors. Network on Chip gradually becomes the bottleneck of communication system. NoC concept is based on “route packets, not wires”. Each processing core is connected to a local router. All the routers, and the links interconnecting the routers, form the NoC. The communication between two processing cores in a NoC is very similar to that between two nodes in a computer network. As the demand of latency and bandwidth keep increasing, Optics is playing vital role in communication due to its high bandwidth, low bit-rate and low power consumption.

Optical NoCs are based on on-chip optical interconnects and routers having significant bandwidth and power advantages. ONoC is similar to the wavelength router, a light path is established according to the shortest path and less congestion so that any data can be transmitted in the optical layer. Currently, most ONoCs use micro-resonator as the building block for optical communication which can work at very high speed. Thus transferring data at a scalable and tremendous speed which provide low latency and high bandwidth.

2. OPTICAL ROUTER

A Router is a backbone device for forwarding of data packets. The optical Router is based on the principle of Optical Fiber. Technology that carry the data at the speed of light i.e. to provide IP at a speed of light. We design a 5*5 Optical Router.

2.1 5*5 OPTICAL ROUTER

A 5*5 Optical Router is a non-blocking optical router. The five bidirectional ports include injection/ejection, east, south, west and north ports.

FIGURE 1: 5*5 2D OPTICAL ROUTER DESIGN

In the given figure 1 we can see that there are five bidirectional optical ports, including East, South, West, North and a local port (injection/ejection) which is connected to the O/E interface in 5*5 2d optical router design.

TABLE 1: ROUTING TABLE FOR 5*5 OPTICAL ROUTER

<table>
<thead>
<tr>
<th>OUTPUT/INPUT</th>
<th>LOCAL</th>
<th>NORTH</th>
<th>EAST</th>
<th>SOUTH</th>
<th>WEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL</td>
<td>--</td>
<td>R12</td>
<td>R11</td>
<td>R10</td>
<td>NONE</td>
</tr>
<tr>
<td>NORTH</td>
<td>R2</td>
<td>--</td>
<td>NONE</td>
<td>R3</td>
<td>R1</td>
</tr>
<tr>
<td>EAST</td>
<td>R4</td>
<td>R6</td>
<td>--</td>
<td>NONE</td>
<td>R5</td>
</tr>
<tr>
<td>SOUTH</td>
<td>NONE</td>
<td>R13</td>
<td>R14</td>
<td>--</td>
<td>R15</td>
</tr>
<tr>
<td>WEST</td>
<td>R7</td>
<td>NONE</td>
<td>R8</td>
<td>R9</td>
<td>--</td>
</tr>
</tbody>
</table>

The above table shows that how data packets are being transferred from one port of optical router to the other with the help of MRs. When powered on, the MRs have an on-state resonance wavelength \(\text{\lambda}_\text{on} \). While an optical signal with a centre wavelength \(\text{\lambda}_\text{on} \) comes into the input port, a powered-on MR will deliver the optical signal to the ejection port of the desired port; i.e. they switch the input single to the desired destination port in on state as shown in figure 2. If MRs is in off state, then there will be no power consumption and signal will be delivered directly to the throughput port.
Multiple basic switching elements may be combined together to implement predefined switching functions. By turning on/off MRs properly, the injected optical signal can be controlled to propagate from an input port to any output port.

Figure 2: Basic optical switching elements (a) Waveguide crossing (b) Parallel switching element in OFF state (c) Parallel switching element in ON state (d) Crossing switching element in OFF state (e) Crossing switching element in ON state.

2.2 INSERTION LOSS

Insertion losses of an optical router decide its feasibility as well as the power consumption required by the O/E interfaces to generate, modulate, and detect optical signals. In our comparison, we considered two major sources of optical insertion losses, the waveguide crossing insertion loss and microresonator insertion loss. The microresonator insertion loss is 0.5 dB. The insertion loss for each path is calculated by:

\[
I.L. = 0.5 \times \text{no. of on-State Micro-resonator} + 0.12 \times \text{no. of crossing waveguide}
\]

Figure 3: Graph showing insertion loss for various ports.

2.3 CROSSTALK

Crosstalk is also an important figure of merit of the optical router, which significantly limits the scalability of the photonic NoC employing such optical routers. Crosstalk of the optical router stems from the MRRs and the waveguide crossings. If \(P_I \) is the power of the input optical signal, the output powers at Out1, Out2, and Out3 ports are:

\[
\text{PO1} = L_C P_I, \quad \text{PO2} = K_1 P_I, \quad \text{PO3} = K_1 P_I
\]

where \(L_C \) is the power loss per crossing and \(K_1 \) is the crosstalk coefficient per crossing. \(P_O2 \) and \(P_O3 \) will become crosstalk noise when they are mixed with other optical signals. When the parallel switching element is in the OFF state, the output powers at the through and drop ports can be calculated as:

\[
\text{PT} = L_{P1} P_I, \quad \text{PD} = K_2 P_I
\]

While the parallel switching element is in the ON state, the output powers at the through and drop ports can be calculated as:

\[
\text{PT} = K_3 P_I, \quad \text{PD} = L_{P2} P_I
\]

The output powers of the crossing switching element in the OFF state can be calculated as:

\[
\text{PT} = L_{C1} P_I, \quad \text{PD} = (K_2 + L_{P2} P_I) K_1 P_I, \quad \text{PA} = K_1 L_{P1} P_I
\]

When the parallel switching element is in the OFF state, the output powers at the through and drop ports can be expressed as:

\[
\text{PT} = L_{C1} P_I, \quad \text{PD} = (K_2 + L_{P2} P_I) K_1 P_I, \quad \text{PA} = K_1 L_{P1} P_I
\]

When it is in the ON state, the output powers of the through, drop, and add ports, respectively, can be expressed as:

\[
\text{PT} = L_{C2} P_I, \quad \text{PD} = L_{C2} P_I, \quad \text{PA} = K_1 L_{P1} P_I
\]

The values of the losses and crosstalk coefficients are shown in Table 2 and 3.

Table 2: Optical Power Losses

<table>
<thead>
<tr>
<th>(L_C)</th>
<th>(L_{C1})</th>
<th>(L_{C2})</th>
<th>(L_B)</th>
<th>(L_{P1})</th>
<th>(L_{P2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.12dB</td>
<td>-0.125dB</td>
<td>-0.56dB</td>
<td>-0.005dB</td>
<td>-0.005dB</td>
<td>-0.58dB</td>
</tr>
</tbody>
</table>

Table 3: Crosstalk coefficients

<table>
<thead>
<tr>
<th>(K_1)</th>
<th>(K_2)</th>
<th>(K_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40dB</td>
<td>-45dB</td>
<td>-25dB</td>
</tr>
</tbody>
</table>

Figure 4: Graph showing crosstalk in dB.

2.4 OPTICAL POWER BUDGET

It is the allocation of available optical power among various loss-producing mechanisms such as launch coupling loss,
fiber attenuation, splice losses, and connector losses, in order to ensure that adequate signal strength (optical power) is available at the receiver. In optical power budget attenuation is specified in decibel (dB) and optical power in dBm. It can be determined by,

\[P(\text{budget}) = P(\text{injected}) - P(\text{extracted}) \text{ (dB)} \]

FIGURE 5: Graph showing power budget

3. CONCLUSIONS

This paper proposed a low power 5*5 2-dimensional optical router which uses optical characteristics as a center of attraction for doing communication due to which the latency and power dissipation reduced and the growing demand of high bandwidth is overcome. The architecture of the 5*5 Optical Router we designed is having insertion loss of about 0.64 dB.

ACKNOWLEDGEMENT

The authors are grateful to the reviewers which offer us helpful suggestions to improve this paper. This work is partially supported by Dr. S.P. Gaikwad, Department of Electronics, Bharti Vidyapeeth University.

REFERENCES

