Estimating the Vehicle Operating Cost through Railway Over Bridge

Yogesh Kumar Khatri ${ }^{1}$, Mr. Mukesh Choudhary ${ }^{2}$, Dr. Bharat Nagar ${ }^{3}$
${ }^{1}$ M. Tech. Scholar, Department of Civil Engineering, Jagannath University, Jaipur, Rajasthan, India
${ }^{2}$ Assistant Professor, Department of Civil Engineering, Jagannath University, Jaipur, Rajasthan, India ${ }^{3}$ Professor, Department of Civil Engineering, Jagannath Gupta Institute of Engineering \& Technology,Jaipur, Rajasthan, India

Abstract

Understanding the vehicle working expense is or vehicle operating cost is fundamental to sound arranging and administration of street ventures. While the framework costs borne by streets offices are generous, the expenses borne by streets clients are much more noteworthy. To qualify these connections, World Bank started a cooperative worldwide examination which prompted the vehicle working costs connections created in this investigation, and presents these in a little simple to utilize PC program which can be utilized freely of the bigger model.

The HDM-VOC program predicts the different parts of vehicle working costs in light of street and vehicle qualities and unit costs in a free stream movement condition. The vehicle working expenses was additionally evaluated by Indian Road Congress parameters. IRC gives a few conditions to assess the VOC for various kinds of vehicles like autos, LCV, transport and so forth in IRC SP 30:2009. This paper is planned to evaluate the vehicle working expense of ROB at LC-70, Sitapura, Jaipur. For this reason world bank investigation of VOC and IRC SP 30:2009 are utilized. By the utilization of these examinations computed the VOC with geometric outline components of ROB at various velocities. These rates are 100 and 120 kmph .

Key Words: Vehicle operating cost (VOC), geometric elements of road, LC-70 (Lacation), HDM-VOC (Software used)

Introduction

The Jaipur Development Authority (JDA) has approved the design of railway over bridge (ROB) to be built on JaipurSawai Madhopur railway track in Sitapura area. This would be the first Y-shaped ROB in the city. The estimated cost of the ROB is Rs 116 crore.

The length of the over bridge will be 925 meters. It will start ahead of Mahatma Gandhi crossing.

It will be a six-lane ROB and its one wing will move in the north direction towards the slip lane connecting Sitapura.
located between Sanganer and Shivdaspura Stations on Jaipur-Sawai Madhopur BG Railway Line.

Sight Distance for Various Speeds

Speed $(\mathrm{km} / \mathrm{h})$	Sight distance (meter)		
	Stopping	intermediate	Overtaking
20	20	40	-
25	25	50	-
30	30	60	-
35	40	80	-
40	45	90	165
50	60	120	235
60	80	160	300
65	90	180	340
80	120	240	470
100	180	360	640
120	240	480	720

(Source: irc.gov.sp.023:1993)

Design table of Summit Curve (Tonk Road Side) for SSD

	4.		\&		4.n lagn dimm (A)	1	(1)	Mystrpint anter anventive BMCpirit	Nuthe yigt pint M.	315	SIL	$\begin{aligned} & \mathrm{Rlif} \\ & \mathrm{BIC} \\ & \text { pint } \end{aligned}$		$\begin{aligned} & \text { Raf } \\ & \text { wiget } \\ & \text { pint } \\ & \text { want } \end{aligned}$
100	003	103	10	1266	20	13930	8896	20	$3 / 7 \%$	$\begin{aligned} & 68 \\ & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & 88 \\ & 25 \end{aligned}$	32215	3645	13:3\%
10.	003	1038	2-W	346	130	12112	10.600	330	S/17	$\begin{aligned} & 68 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 48 \\ & 25 \end{aligned}$	32215	3/360	36188

Design table of Summit Curve (Tonk Road Side) for OSD

Project Location

This ROB will ease traffic on Road connection Sitapura Industrial area to Jaipur - Tonk Road (NH-12). LC No. 70 is

$\begin{aligned} & \text { Dsign } \\ & \text { Spud } \\ & (\mathrm{m}(\mathrm{~m}) \end{aligned}$	It	12	V	S					Ruthe mghest pint M	BICS	NCS	LabBlcpin	Rofligherpion angradine	$\begin{array}{\|c\|} \text { Redof } \\ \text { hipget } \\ \text { pinite } \\ \text { curve } \end{array}$	Stations	Chainage from BVC	RL of Points on Grade Line	Ordinates B/W Curve and Grade Line	RL of Station on Curve	
							1								0	364.2	0	364.2		
							2								10	363.95	0.006578947	363.9434211		
											3				20	363.7	0.026315789	363.6736842		
100	0033	0	0033	60	98909	10000_{61}^{660}		600 300	100	165	482	2	322015	335015	37858	4	30	363.45	0.059210526	363.3907895
																5	40	363.2	0.105263158	363.0947368
120	0033	0	0033	720	114909	11500_{69}^{690}			1150	18975	(4825	1782	36205	4000	3810:	6	50	362.95	0.164473684	362.7855263

Design table of Summit Curve (Mahatma Gandhi Hospital Side) for SSD

Design Speed (m/s)	n1	n2	N	S			a	R	Highest pointon the curveXD from Bics point	RL of the highest point (I)	B/CS	EVCS R	RL of BVCpoing	RL of highest poin on Grade Line	RL of highest pointit curve
100	0.033	0	0.033	640	989,09	1000	$\begin{array}{\|c\|} \hline 660 \\ 6.1 \\ \hline \end{array}$	3030 3.0	1000	16.5	64825	16482.	36205	395.05	378.55
120	0.033	0	0.033	720	1149,09	1150	$\begin{array}{\|c\|} \hline 6969 \\ 6.9 \\ \hline \end{array}$	$\begin{array}{\|c\|} 3484 \\ 8.5 \\ \hline \end{array}$	1150	18975	64825	17982.2.	362.05	400,0	381.03

Design table of Summit Curve (Mahatma Gandhi Hospital Side) for OSD

$\left\|\begin{array}{l} \text { Dexigy } \\ \text { speed } \\ \text { (m/s } \end{array}\right\|$	121	12	V	S	Calultad enght of umy (L)	Alopterilenti of curve (L)	1	R	Highest pointon the curve whom som BRE point	RL ofthe highest point(I)	B/CS		RL ofBVCpoint	$\begin{aligned} & \text { RL of igigles } \\ & \text { point on } \\ & \text { Grade Line } \end{aligned}$	$\begin{gathered} \text { RL of highestpoint } \\ \text { curve } \end{gathered}$
100	0	.0.025	0.025	640	1104	1105			1	0	934,77	2039, ${ }^{17}$	367, 2	364.2	367, 2
120	0	$\cdot 0.025$	0.025	720	1264	1265		50600	0	0	934.77	2199, ${ }^{\prime \prime}$	364.2	364.2	364.2

Summit curve I (Tonk Road Side) at 100 kmph

Stations	Chainage from BVC	RL of Points on Grade Line	Ordinates B/W Curve and Grade Line	RL of Station on Curve
1	0	362.055	0	362.055
2	10	362.385	0.007173915	362.3778261
3	20	362.715	0.02869566	362.6863043
4	30	363.045	0.064565236	362.9804348
5	40	363.375	0.114782641	363.2602174
6	50	363.705	0.179347877	363.5256521

WHEN DESIGN SPEED IS 100 KMPH

Summit curve II (Hospital Side) at 100 kmph

WHEN DESIGN SPEED IS $\mathbf{1 0 0} \mathbf{K M P H}$

Summit curve I (Tonk Road Side) at 120 kmph

Stations	Chainage from BVG	RL of Points on Grade Line	Ordinates B/W Curve and Grade Line	RL of Station on Curve
1	0	362.055	0	362.055
2	10	362.385	0.004714286	362.3802857
3	20	362.715	0.018857144	362.6961429
4	30	363.045	0.042428574	363.0025714
5	40	363.375	0.075428576	363.2995714
6	50	363.705	0.11785715	363.5871429

Summit curve II (Hospital Side) at $120 \mathbf{~ k m p h}$

Stations	Chainage from BVC	RL of Points on Grade Line	Ordinates B/W Curve and Grade Line	RL of Station on Curve
1	0	364.2	0	364.2
2	10	363.95	0.001131222	363.9488688
3	20	363.7	0.004524887	363.6954751
4	30	363.45	0.010180995	363.439819
5	40	363.2	0.018099548	363.1819005
6	50	362.95	0.028280543	362.9217195

Design Table for Valley Curve (Tonk Road Side)

$\begin{gathered} \text { Desi } \\ \text { gn } \\ \text { Spe } \\ \text { ed } \\ (\mathrm{m} / \\ \mathrm{s}) \end{gathered}$	n1	n2	2 N		$\begin{gathered} \text { Calc } \\ \text { ulate } \\ \text { d } \\ \text { S lengt } \\ \text { h of } \\ \text { curv } \\ \text { e (L) } \end{gathered}$	Adop ted lengt h of curv e (L)	a		High est point on the curv (X) from BVCS point	$\begin{gathered} \text { RL } \\ \text { of } \\ \text { the } \\ \text { high } \\ \text { est } \\ \text { poin } \\ \text { por } \end{gathered}$	BV S	S	$\begin{gathered} \text { RL } \\ \text { of } \\ \text { BVC } \\ \text { poin } \\ t \end{gathered}$	RL of high est poin ton Grad e Line	$\begin{gathered} \text { RL } \\ \text { of } \\ \text { of } \\ \text { est } \\ \text { est } \\ \text { poin } \\ \text { dat } \\ \text { cur } \\ \text { cut } \end{gathered}$
$\begin{gathered} 10 \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline- \\ 0.0 \\ 00 \\ 79 \\ \hline \end{array}$	$\left\|\begin{array}{c} 0 . \\ 03 \\ 3 \end{array}\right\|$	$\begin{array}{c\|c} 0 . \\ 3 \\ 33 \\ 4 \end{array}$	$\begin{array}{c\|c} 18 \\ 3 & 18 \\ 0 \end{array}$	$\begin{array}{c\|c} 18 & 131 . \\ 0 & 19 \end{array}$	140	$\begin{aligned} & 821 \\ & 3.5 \end{aligned}$	$\begin{gathered} 410 \\ 6.7 \\ 7 \end{gathered}$	$\left.\begin{gathered} 0 \\ 3.40 \\ 20 \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{gathered} 0.0 \\ 014 \\ 09 \end{gathered}\right.$	425 .64	$\begin{aligned} & 565 \\ & .64 \end{aligned}$	355 .57	. 68	355 .68
$\begin{gathered} 12 \\ 0 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 00 \\ & 79 \end{aligned}$	$\left\|\begin{array}{c} 0 . \\ 03 \\ 3 \end{array}\right\|$	$\begin{array}{c\|c} 0 . \\ 3 \\ 33 \\ 4 \end{array}$	$\begin{array}{c\|c} \mathbf{3}_{2}^{24} \\ \hline \end{array}$	$\begin{array}{c\|c} \hline 4 & 189 . \\ 0 & 59 \end{array}$	200	$\begin{array}{\|c} 117 \\ 33 . \\ 64 \end{array}$	$\begin{gathered} 586 \\ 6.8 \\ 2 \end{gathered}$	$\mathfrak{c \| c} \left\lvert\, \begin{gathered} - \\ 4.86 \\ 00 \end{gathered}\right.$	$\left(\begin{array}{c} 0.0 \\ 020 \\ 13 \end{array}\right.$	425 .64	625	355 .57	355	355

Design Table for Valley Curve (Mahatma Gandhi Hospital Side)

$\begin{gathered} \text { Des } \\ \text { gn } \\ \text { Spe } \\ \text { ed } \\ (\mathrm{m} / \\ \mathrm{s}) \end{gathered}$	n1	n2	N S	$\begin{gathered} \text { Calc } \\ \text { cale } \\ \text { d } \\ \text { S lengt } \\ \text { h of } \\ \text { curv } \\ \text { e (L) } \end{gathered}$	$\begin{gathered} \text { Adop } \\ \text { ted } \\ \text { lengt } \\ \text { h of } \\ \text { curv } \\ e(\mathrm{~L}) \end{gathered}$	a	R	High est poin on the curv e(X) from BVCS point	RL of the high est poin $t(Y)$	BVC	S	$\begin{gathered} \text { RL } \\ \text { Cof } \\ \text { BVC } \\ \text { poin } \\ \text { t } \end{gathered}$	RL of high est poin t on Grad Line	RL of high est poin t at cury e
$\begin{gathered} 10 \\ 0 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 25 \end{aligned}$	$\begin{gathered} - \\ 0 . \\ 00 \\ 2 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c} 0 . & 18 \\ 02 & 18 \\ 3 & 0 \\ \hline \end{array}$	$\begin{array}{c\|c} 18 & 15 . \\ 0 & 40 \end{array}$	60	$\begin{gathered} 530 \\ 1.5 \end{gathered}$	$\begin{gathered} 265 \\ 0.7 \\ 6 \end{gathered}$	$\begin{gathered} 54.8 \\ 1 \end{gathered}$	0.5	. 334	394	. 354	353	$\begin{gathered} 35 \\ 3.9 \\ 6 \end{gathered}$
$\begin{aligned} & 12 \\ & 0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 25 \end{aligned}$	0.	$\begin{array}{\|l\|l} \hline 0 . & 24 \\ 02 & 2 \\ 3 & 0 \\ \hline \end{array}$	$\begin{array}{l\|l} 42 . \\ 6 & 42 \end{array}$	0	$\begin{aligned} & 706 \\ & 8.7 \end{aligned}$	$\begin{aligned} & 353 \\ & 4.3 \\ & 5 \end{aligned}$	73.0 8	0.7	334	414	354	. 352	$\begin{aligned} & 35 \\ & 3.7 \end{aligned}$

Valley curve I (Tonk Road Side) at 100 kmph

Stations	Chainage from BVC	RL of Points on Grade Line	Ordinates B/W Curve and Grade Line	RL of Station on Curve
1	0	355.57	0	355.57
2	10	355.5621	0.012175001	355.574275

3	20	355.5542	0.048700002	355.6029
4	30	355.5463	0.109575005	355.655875
5	40	355.5384	0.194800009	355.7332
6	50	355.5305	0.304375013	355.834875

WHEN DESIGN SPEED IS 100 KMPH

Valley curve II (Hospital Side) at 100 kmph

Valley curve I (Tonk Road Side) at 120 kmph

Stations	Chainage from BV	RL of Points on Grade Line	Ordinates B/W Curve and Grade Line	RL of Station on Curve
1	0	355.57	0	355.57
2	10	355.5621	0.008522505	355.5706225
3	20	355.5542	0.034090018	355.58829
4	30	355.5463	0.076702541	355.6230025
5	40	355.5384	0.136360072	355.6747601

Valley curve II (Hospital Side) at 120 kmph

Stations	Chainage from BV	RL of Points on Grade Line	Ordinates B/W Curve and Grade Line	RL of Station on Curve
1	0	354.64	0	354.64
2	5	354.515	0.003536718	354.5185367
3	10	354.39	0.014146873	354.4041469
4	15	354.265	0.031830464	354.2968305
5	20	354.14	0.056587491	354.1965875
6	25	354.015	0.088417955	354.103418

Minimum Curve Radius for Different Design Speeds

Design Speed	 Rolling Terrain(m)	Mountainous and Steep Terrain	
		Snow Bound Area (m)	Non-snow Bound Area (m)
20	15	15	14
25	23	23	20
30	33	33	30
35	45	45	40
40	60	60	50
50	90	90	80
65	155	Speed not applicable	
80	230		
100	360		
120	450		

(Source: irc 38:1988)

Length of Transition Curve as Per Radius of Curvature and Design Speed

Transition Lengths (m) for Plain and Rolling Terrain

Curve Radius (m)	$\begin{aligned} & 100 \\ & \mathrm{~km} \\ & / \mathrm{h} \end{aligned}$	$\begin{aligned} & 80 \\ & \mathrm{~km} \\ & / \mathrm{h} \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~km} \\ & / \mathrm{h} \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{~km} \\ & / \mathrm{h} \end{aligned}$	$\begin{aligned} & 40 \\ & \mathrm{~km} \\ & / \mathrm{h} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{~km} \\ & / \mathrm{h} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{~km} \\ & / \mathrm{h} \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{~km} \\ & / \mathrm{h} \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{~km} \\ & / \mathrm{h} \end{aligned}$
20	-	-	-				-	-	55
40	-						60	45	30
80	-	-	-	-	55	45	30	25	15
100	-	-	-	70	45	35	25	20	-

125	-	-	-	55	35	30	20	15	-
155	-	-	80	-	-	-	-	-	-
200	-	-	60	35	20	15	15	-	-
250	-	90	50	30	20	-	-	-	-
300	-	75	40	25	-	-	-	-	-
350	130	60	35	20	-	-	-	-	-
360	130	-	-	-	-	-	-	-	-
400	115	55	30	20	-	-	-	-	-

(Source: IRC 38:1988)
Design Table of Horizontal Curve (Tonk Road Side)

S.No									
\cdot	Design Speed $(\mathrm{km} / \mathrm{h}$ $)$	Rc (m)	e	e take n	f	PC	PT	LCLong Chord Deviatio n Angle $(\Delta \mathrm{S})$	
1	120	515.5 2	0.12 4	0.07	0.14 9	665.2 5	785.2 5	120	13.37
2	100	358	0.12 4	0.07	0.14 9	665.2 5	785.2 5	120	19.18

Design Table of Horizontal Curve (Tonk Road Side)

Ls	$\begin{gathered} \text { Adop } \\ \text { ted } \\ \text { Ls } \end{gathered}$	$\theta \mathrm{s}$	Shif t for unit leng th of θ		$\begin{gathered} \text { K } \\ \text { for } \\ \text { unit } \\ \text { leng } \\ \text { lh } \end{gathered}$	K	$\begin{gathered} (\Delta s \\) \end{gathered}$	(Δ)	Ts	Es	$\begin{gathered} (\mathrm{Lc} \\ \mathrm{J} \end{gathered}$	L
75.	1	7.2	0.01	1.3	0.53	69.	13.	27.	2303	1776	120	250.
41		2	05	65	51	56	37	82	. 03	. 98	. 2	23
75.	130	10.	0.01	1.9	0.49	64.	19.	39.	856.	511.	119	249.
41	130	40	51	63	95	93	18	98	66	7	. 7	78

Design Table of Horizontal Curve (Hospital Side)

S.No \cdot	Design Speed $(\mathrm{km} / \mathrm{h}$ $)$	Rc (m)	e	e take n	f	PC	PT	LC (Long Chord)	Deviatio n Angle $(\Delta \mathrm{S})$
1	120	515.5 2	0.12 4	0.07	0.14 9	870.4 3	966.4 3	96	10.68
2	100	358	0.12 4	0.07	0.14 9	870.4 3	966.4 3	96	15.32

Design Table of Horizontal Curve (Hospital Side)

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056

All the geometric analysis (tables \& charts showing total horizontal \& vertical profile of the ROB LC-70) is done by using the all codes from Indian Road Congress such as:

1. IRC $86: 1983$ is used to calculate geometric design standards for urban roads in Plains.
2. IRC SP 30:2009 is used for manual economic evaluation of highway projects in India
3. IRC $38: 1988$ gives guidelines for design of horizontal curves for highways and design tables
4. IRC SP 023:1993 is used to calculate the vertical curves for highways.

VOC THROUGH ROB BY WORLD BANK (HDM-VOC)

The World Bank started a community worldwide examination which prompted the VOC connections created in this investigation. These connection show in alittle simple to utilize PC program, this can be utilized freely of the bigger model. The HDM-VOC program predicts the different parts of VOC in respect to vehicle \& road qualities and unit cost in a free stream movement condition. Calculations are accommodated ten vehicle writes running from little auto to articulated truck, and process speed, physical amount devoured, and add up to working expenses.

APPROACH OF ANALYSIS (HDM-VOC RELATIONSHIPS)

It works into steps stated below:

1. Mean operating speed of vehicle calculated.
2. Calculate amount of resources used per 1000 vehicle-km for the components as
$>$ Fuel consumption
$>$ Lubricant consumption
$>$ Tire wear
$>$ Crew time
> Passenger time
> Cargo holding
> Maintenance labor
> Maintenance parts
$>$ Depreciation
$>$ Interest
$>$ Overhead
3. Apply unit costs to the resource consumptions amounts.
4. Sum the operating cost for each component \& calculate the total VOC per 1000 vehicle-km.

INPUTS FOR HDM-VOC PROGRAM

1. Surface Type: The model gives two choices to street surface write: (i) Paved and (ii) Unpaved. Enter 1 to choose a cleared street, and 0 to choose an unpaved street.
2. Roughness: The street unpleasantness is characterized as the deviation of a surface from a genuine planer surface with attributes that influence vehicle progression, ride
quality, dynamic burdens and seepage. Enter the normal street unpleasantness in IRI units (International roughness index, in m / km).

Quantitative Evaluation	Roughness IRI (m/km)	
	Paved Road	Unpaved Road
Smooth	2	4
Reasonably smooth	4	8
Medium rough	6	12
Rough	8	15
Very rough	10	20

(Source: World Bank Technical Paper No. 234)
3. Vertical Profile: Travel on a road can be understood in three different types between two points as A and B. These are: (i) One-way travel from A to B (ii) One-way travel from B to A (iii) Round trip travel either from A to B and back to A, or from B to A and back to B.
Take after the means underneath to process the vertical geometric totals from a definite geometric profile:
A. Start with an itemized vertical profile.
B. Divide the roadway into segments with peaks and trough as limit focuses. Decide the lengths (ls) and normal slopes (as a group and with sighns held) of the segments (gs) and shape a forbidden profile of vertical geometry.
C. Determine the 'positive gradient (ps) of each section:
If the gradient of sections is positive, i.e., $g_{s} \geq 0$, then:

$$
\mathrm{p}_{\mathrm{s}}=\mathrm{g}_{\mathrm{s}} .
$$

If the gradient of sections is negative, i.e., $g_{s}<0$, then:

$$
\mathrm{p}_{\mathrm{s}}=0
$$

D. Determine the negative gradient $\left(n_{s}\right)$ of each section:
If the gradient of sections is positive, i.e., $g_{s} \geq 0$, then:

$$
\mathrm{n}_{\mathrm{s}}=0
$$

If the gradient of section s is negative, i.e., gs < 0 , then:
$n_{s}=|g s|$, where $|g s|$ is the absolute value of g_{s}
E. Determine the 'rise' of each section. Multiply length and positive gradient to get pl_{s} :

$$
\mathrm{Pl}_{\mathrm{s}}=\mathrm{Ps}_{\mathrm{s}}
$$

F. Determine the 'fall' of each section. Multiply length and negative gradient to get nl_{s} :

$$
\mathrm{nl}_{\mathrm{s}}=\mathrm{n}_{\mathrm{s}} \mathrm{l}_{\mathrm{s}}
$$

G. Specify the segments with positive gradient (uphill travel). Enter the length ls of the section if the section has a positive gradient; enter zero if the section has a negative gradient:

$$
\begin{array}{ll}
P_{s}=l_{S} & \text { if } g s \geq 0 \\
P_{s}=0 & \text { if } g s<0
\end{array}
$$

H. Form the totals of columns to get $\mathrm{L}, \mathrm{PL}, \mathrm{NL}$ and P, respectively.
I. Compute the average vertical geometric characteristics.
The recommended range for positive gradient (PG) and negative gradient (NG) is from 0 to 12 percent. The range for the proportion of uphill travel (LP) is from 0 to 100 percent.

Computation of Vertical Aggregates for 100 kmph

\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Sectio } \\
\mathrm{n}\end{array} & \begin{array}{c}\text { Lengt } \\
\mathrm{h} \\
(\mathrm{m})\end{array} & \begin{array}{c}\text { Gradient } \\
\text { (Fraction) })\end{array} & \begin{array}{c}\text { Positive } \\
\text { Gradient } \\
\text { (Fractio } \\
\mathrm{n})\end{array}\end{array}
$$ $$
\begin{array}{c}\text { Negative } \\
\text { Gradient } \\
\text { (Fraction) }\end{array}
$$ ~ \begin{array}{c}Rise

(\mathrm{m})\end{array}\right)\) Fall (m) | Uphill |
| :---: |
| Travel |
| (m) |$|$

AVERAGE POSITIVE GRADIENT (PG) $=(\mathrm{PL} / \mathrm{P}) * 100=3.33 \%$
AVERAGE NEGATIVE GRADIENT (NG)= [NL/(L-P)]*100=0.747\%
AVERAGE UPHILL TRAVEL= $(\mathrm{P} / \mathrm{L}) * 100=29.84 \%$
$\mathrm{RF}=\{(365.85-355.57)+(364.2-353.96)\} / .910=22.55 \mathrm{~m} / \mathrm{Km}$
Computations of Vertical Aggregates for 120 kmph

Sectio n	Lengt h (m)	Gradient (Fraction)	Positive Gradient (Fractio $\mathrm{n})$	Negative Gradient (Fraction)	Rise (m) Fall (m)	Uphill Travel (m)	
1	10 0	- 0.0007 9	0	0.0007 9	0	0.079	0
2	10 0	0.0333	0.033 3	0	3.33	0	10 0
3	17 5	0.0333	0.033 3	0	5.827 5	0	17 5
4	17 5	0	0	0	0	0	0
5	15 5	0	0	0	0	0	0
6	15 5	-0.025	0	0.025	0	3.875	0
7	40	-0.025	0	0.025	0	1	0

		-		0.0023		0.094	0
	40	0.0023	0	65		6	0
	$\mathbf{L =}$				PL=	NL=	P=
	$\mathbf{9 4}$				$\mathbf{9 . 1 5 7}$	$\mathbf{5 . 0 4 8}$	$\mathbf{2 7}$
	$\mathbf{0}$				$\mathbf{5}$	$\mathbf{6}$	$\mathbf{5}$

AVERAGE POSITIVE GRADIENT (PG)= (PL/P)*100=3.33\%
AVERAGE NEGATIVE GRADIENT (NG)= [NL/(L-P)]*100=0.765\% AVERAGE UPHILL TRAVEL= $(\mathrm{P} / \mathrm{L}) * 100=29.25 \%$
$\mathrm{RF}=\{(367.83-355.57)+(364.2-353.74)\} / .910=24.97 \mathrm{~m} / \mathrm{Km}$

Average Horizontal Geometric Characteristics

Average		One way Trip		
Geometric Characterist ics	Symbol	A to B	B to A	Round- trip
Average Curvature	C	K/L	K/L	K/L
Average Super elevation	SP	S/L	S/L	S/L

(Source: World Bank Technical Paper No. 234)

Computations of Horizontal Aggregates for Design Speed 100 kmph

Cur vy Sec tion	Len gth (m)	Radi us of Curv ature (m)	Curvat ure $(\mathrm{deg} / \mathrm{k}$ $\mathrm{m})$	Supe r Elev ation	cl_{s}	sl_{s}
1	24	360	159.23 9.8	0.07	39777. 07006	17. 486
2	22	360	15988	5.23	0.07	35939. 49045
	5.7		56688	799		
					$\mathbf{7 5 7 1 6 .}$	$\mathbf{3 3 .}$ $\mathbf{2 8}$ $\mathbf{5}$

ROAD LENGTH $=\mathbf{9 1 0 m}$
HORIZONTAL CURVATURE $=75716.56051 / 910=$
83.20

SUPERELEVATION $=33.285 / 910=\mathbf{0 . 0 3 6}$

Computations of Horizontal Aggregates for Design Speed 120 kmph

| Cur
 vy
 Sect
 ion | Len
 gth
 (m) | Radiu
 s of
 Curva
 ture
 (m) | Curvatu
 re
 $(\mathrm{deg} / \mathrm{k}$
 $\mathrm{m})$ | Supe
 r | Eleva
 tion | cl_{s} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | sl_{s}.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 05 Issue: 06 | June-2018
www.irjet.net
p-ISSN: 2395-0072

```
HORIZONTAL CURVATURE \(=52496.32533 / 910=57.69\) SUPERELEVATION \(=33.334 / 910=\mathbf{0 . 0 3 7}\)
```

Altitude of Terrain: The model uses height of landscape (the normal rise of street over the mean ocean level, in meters) to process the air protection from the vehicle movement. The prescribed range for elevation (AL) is from 0 to 5000 meters.

Effective Number of Lanes: The model gives two choices to the powerful no. of paths: (i) one lane (ii) more than one lane. Enter 1 to choose the solitary path (lane) street, and 0 to choose an in excess of one path street.

Vehicle Type: Any type of vehicle can be selected now. We are selecting small car for our dissertation.

Desired Speed: The coveted speed requirement (VDESIR) is the coveted vehicle speed without the impact of street seriousness factor. On a straight, level and smooth street, despite the fact that the driving, braking, bend and ride seriousness speed imperatives don't exist, the vehicle still does not regularly go at the speed managed by its own particular greatest or even utilized power.

Tire Wear Information:

The tire wear taken \& uses by model as following:
$>$ Number of tires per vehicle
> Wearable volume of rubber per tire (dm^{3})
$>$ Retreading cost per new tire cost ratio (fraction)
$>$ Maximum number of recaps
$>$ Constant term of tread wear model $\left(\mathrm{dm}^{3} / \mathrm{m}\right)$
Wear coefficient of tread wear model ($10-3 \mathrm{dm}^{3} / \mathrm{kJ}$)

Recommended Wearable Volume of Rubber per Tyre

Vehicle	Recommended Wearable Volume of Rubber per Tyre ($\mathbf{d m}^{\mathbf{3}}$)
Buses	$5.6-8.0$
Light trucks	$2.0-3.5$
Medium trucks	$6.5-9.3$
Heavy trucks	$6.3-8.8$
Articulated trucks	$6.0-8.5$

(Source: World Bank Technical Paper No. 234)
The model uses fixed tear-wear coefficient for the rubber loss volume prediction, (dm3/1000 tire-km)

Unit Costs: Unit costs can either be financial or economic. Various unit costs required are such as:

```
 New Vehicle Price
\(>\) Fuel Cost
\(>\) Lubricants Cost
\(>\) New Tire Cost
\(>\) Crew Time Cost
> Passenger Delay Cost
> Maintenance Labor Cost
```

> Cargo Delay Cost
$>$ Annual Interest Rate
> Overhead per vehicle-km
After giving all required data as input in the software we get following results:

Passenger Car Sample Data (Result Report):- For 100 kmph

1. Vehicle Speed	$\mathrm{km} / \mathrm{hr}$		100
2. Physical Quantities per 1000 vehicle-km			
Fuel consumption	liters		85.23
Lubricants consumption	liters	01.85	
Tyre wear	\# of equivalent new tires	00.06	
Crew time	hours		10.00
Passenger time	hours	10.00	
Cargo holding	hours		10.00
Maintenance labor	hours	02.27	
Maintenance parts	$\%$ of new vehicle		
price	00.16		
Depreciation	$\%$ of new vehicle		
price	00.43		
Interest	$\%$ of new vehicle		
price	00.23		
3. Total VOC per 1000 vehicle-km	$\$$	$\mathbf{1 9 0 . 4 7}$	$\mathbf{1 0 0 \%}$
Fuel	$\$$	98.01	51.46%
Lubricants	$\$$	12.81	06.73%
Tyres	$\$$	02.99	01.57%
Crew time	$\$$	15.00	07.88%
Passenger time	$\$$	00.00	00.00%
Cargo holding	$\$$	00.00	00.00%
Maintenance labor	$\$$	04.99	02.62%
Maintenance parts	$\$$	10.98	05.76%
Depreciation	$\$$	29.96	15.73%
Interest	$\$$	15.73	08.26%
Overhead	$\$$	00.00	00.00%

Passenger Car Sample Data (Result Report):- For 120 kmph

1. Vehicle Speed	$\mathrm{km} / \mathrm{hr}$	120
2. Physical Quantities per 1000 vehicle-km		
Fuel consumption	liters	96.82
Lubricants consumption	liters	01.85
Tyre wear	\# of equivalent new tires	00.06
Crew time	hours	08.33

Passenger time		hours	08.33
Cargo holding		hours	08.33
Maintenance labor		hours	02.27
Maintenance parts		new vehicle price	00.16
Depreciation		new vehicle price	00.41
Interest		new vehicle price	00.21
3. Total VOC per 1000 vehicle-km	\$	198.34	100\%
Fuel	\$	111.34	56.14\%
Lubricants	\$	12.81	06.46\%
Tyres	\$	02.99	01.51\%
Crew time	\$	12.50	06.30\%
Passenger time	\$	00.00	00.00\%
Cargo holding	\$	00.00	00.00\%
Maintenance labor	\$	04.99	02.51\%
Maintenance parts	\$	10.98	05.53\%
Depreciation	\$	28.40	14.32\%
Interest	\$	14.32	07.22\%
Overhead	\$	0.00	00.00\%

DISCUSSION OF VOC

As clearly shown by tables we can easily observe that the VOC calculated at 100 kmph vehicle speed is lesser than the VOC calculated at vehicle speed 120 kmph . So it is obvious that the design vehicle speed with respect to VOC should be considered as 100 kmph .

VEHICLES OPERATING COST OF ROB BY IRC

The distance related and time related VOC calculated as following:

(A)For Speed 100 kmph:

Distance related economic costs:

1. Free Speed (V):

Free Speed (V) = 73.14-(0.711*RF) -0.00171* (RG-2000) Where,
$\mathrm{RG}=2000 \mathrm{~mm} / \mathrm{km}$
$\mathrm{RF}=22.55 \mathrm{~m} / \mathrm{km}$
$\mathrm{V}=73.14-\left(0.711^{*} 22.55\right)-0.00171^{*}(2000-2000)$
$\mathrm{V}=57.11 \mathrm{kmph}$
So, take V = 58 kmph

2. Fuel:

Fuel consumption (FC) $=21.85+(504.15 / \mathrm{V})+0.004957^{*} \mathrm{~V}^{2}$ $+0.000652^{* R G}+1.0684 *$ RS-0.3684*FL
Where
$\mathrm{V}=58 \mathrm{~km} / \mathrm{h}$
$\mathrm{RS}=6.77 \mathrm{~m} / \mathrm{km}$
$\mathrm{RG}=2000 \mathrm{~mm} / \mathrm{km}$
$\mathrm{FL}=3.57 \mathrm{~m} / \mathrm{km}$
$(F C)=21.85+(504.15 / 58)+0.004957 * 58^{2}+0.000652^{*} 2000$ + 1.0684*6.77-0.3684*3.57
(FC) = 54.44 liters/ 1000 km
Unit cost of petrol is $76 \mathrm{Rs} /$ liter.
So, the fuel cost $=54.44^{*} 76=\mathbf{4 1 3 7 . 4 4} \mathbf{~ R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$

3. Tire cost:

Tire life (TL) = 68771-147.9*RF-26.72*(RG/W)
Where,
$\mathrm{RG}=2000 \mathrm{~mm} / \mathrm{km}$
$\mathrm{W}=7 \mathrm{~m}$
$(\mathrm{TL})=68771-147.9^{*} 22.55-26.72^{*}(2000 / 7)$
$(\mathrm{TL})=57801.57 \mathrm{~km}$
Unit Tire cost $=3250$ Rs
So, the tire cost $=3250 / 57.80157=\mathbf{5 6 . 2 3} \mathbf{R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$

4. Lubricants costs:

Engine oil (EOL) $=1.7048+0.03319^{*} \mathrm{RF}+0.0005241^{*}(\mathrm{RG} / \mathrm{W})$
$($ EOL $)=1.7048+0.03319 * 22.55+0.0005241^{*}(2000 / 7)$
(EOL) $=\mathbf{2 . 6}$ liters $/ \mathbf{1 0 0 0} \mathbf{~ k m}$
Other oil (OL) $=1.631+.05167^{* R F}+.001867^{*}(\mathrm{RG} / \mathrm{W})$
(OL) $=1.631+0.05167 * 22.55+.001867 *(2000 / 7)$
$(O L)=3.33$ liters $/ \mathbf{1 0 0 0 0} \mathbf{~ k m}$
Grease (G) $=2.816+0.2007 *$ RF
$(G)=2.816+0.2007 * 22.55$
(G) $=\mathbf{7 . 3 4} \mathbf{~ k g} / \mathbf{1 0 0 0 0} \mathbf{~ k m}$

Unit cost: EOL = $130 \mathrm{Rs} /$ liter

$$
\begin{aligned}
& \mathrm{OL}=248.25 \mathrm{Rs} / \mathrm{liter} \\
& \mathrm{G}=112.35 \mathrm{Rs} / \mathrm{kg}
\end{aligned}
$$

So, the Engine oil cost = 130*2.6 = $\mathbf{3 3 8} \mathbf{~ R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$
Other oil cost $=248.25^{*} .333=\mathbf{8 2 . 6 7} \mathbf{~ R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$ Grease $=112.35^{*} .734=82.46 \mathbf{R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$
So, the Lubricants cost $=338+82.67+82.46=\mathbf{5 0 3 . 1 3}$
Rs/ 1000 km.

5. Spare cost

Spare cost (SP) $=\left\{0.0018^{*}(\mathrm{RG}-2000)^{*} 10^{-5}\right\}^{*} \mathrm{NP}$
Where,
$\mathrm{NP}=$ cost of new vehicle $=4,50,600 \mathrm{Rs}$
SP $=\left\{0.0018^{*}(2000-2000)^{*} 10^{-5}\right\}^{*} 450600$
SP = 0.00 paisa $/ \mathrm{km}$

6. Maintenance Labor cost

(LC) $=0.5498 *$ SP
Where,
$\mathrm{SP}=0.00$ paisa $/ \mathrm{km}$
So, LC $=0.00$ paisa $/ \mathrm{km}$
So, distance related economic cost $=$
4137.44+56.23+503.13+0.00+0.00 = 4696.8 Rs/1000 km

Time related economic cost

1. Fixed cost

$\mathrm{F}_{\mathrm{x}}=370.14 / \mathrm{UPD}$
Where,
UPD $=6.187^{*} \mathrm{~V}=6.187 * 58=358.846 \mathrm{~km} /$ day
$\mathrm{F}_{\mathrm{x}}=370.14 / 358.846=1.03 \mathrm{Rs} /$ year
So, $F_{x}=1.03 \mathbf{R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$
2. Depreciation cost
$\mathrm{DC}=70.85 / \mathrm{UPD}=70.85 / 358.846=0.19744 \mathrm{Rs} / \mathrm{km}$
So, $D C=197.44$ Rs/1000 km

3. Passenger time cost

$\mathrm{PT}=227.82 / \mathrm{V}=227.82 / 58=\mathbf{3 . 9 2 7 9} \mathbf{R s} / \mathbf{k m}$
So, $\mathrm{PT}=3.9279^{*} 1000=3927.9 \mathrm{Rs} / \mathbf{1 0 0 0} \mathbf{~ k m}$

So, time related economic cost $\boldsymbol{= 1 . 0 3 + 1 9 7 . 4 4 + 3 9 2 7 . 9 =}$ 4126.37 Rs/1000 km

Total VOC $=\mathbf{4 6 9 6 . 8} \mathbf{+ 4 1 2 6 . 3 7}=\mathbf{8 8 2 3 . 1 7 5} \mathbf{R s} / \mathbf{1 0 0 0} \mathbf{k m}$
(B) For Speed 120 kmph

Distance related economic costs

1. Free Speed (V):

Free Speed (V) $=73.14-\left(0.711^{*} R F\right)-0.00171^{*}(R G-2000)$ Where,
$\mathrm{RG}=2000 \mathrm{~mm} / \mathrm{km}$
$\mathrm{RF}=24.97 \mathrm{~m} / \mathrm{km}$
$\mathrm{V}=73.14-\left(0.711^{*} 24.97\right)-0.00171^{*}(2000-2000)$
$\mathrm{V}=55.39 \mathrm{kmph}$
So, take V = 56 kmph

2. Fuel

Fuel consumption (FC) $=21.85+(504.15 / \mathrm{V})+0.004957 * \mathrm{~V}^{2}$ $+0.000652 * R G+1.0684 * R S-0.3684 *$ FL
Where,
$\mathrm{V}=56 \mathrm{~km} / \mathrm{h}$
$\mathrm{RS}=10.06 \mathrm{~m} / \mathrm{km}$
$\mathrm{RG}=2000 \mathrm{~mm} / \mathrm{km}$
$\mathrm{FL}=5.55 \mathrm{~m} / \mathrm{km}$
$(F C)=21.85+(504.15 / 56)+0.004957 * 56^{2}$
$+0.000652^{*} 2000+1.0684 * 10.06-0.3684 * 5.55$
(FC) = 56.40 liters $/ \mathbf{1 0 0 0}$ km
Unit cost of petrol is $76 \mathrm{Rs} /$ liter.
So, the fuel cost $=56.40 * 76=\mathbf{4 2 8 6 . 4} \mathbf{R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$
3. Tire cost:

Tire life (TL) $=68771-147.9 *$ RF- $26.72^{*}(R G / W)$
Where,
$\mathrm{RG}=2000 \mathrm{~mm} / \mathrm{km}$
$\mathrm{W}=7 \mathrm{~m}$
$(\mathrm{TL})=68771-147.9^{*} 24.97-26.72^{*}(2000 / 7)$
$(\mathrm{TL})=57443.65 \mathrm{~km}$
Unit Tire cost $=3250$ Rs
So, the tire cost $=3250 / 57.44365=\mathbf{5 6 . 5 8} \mathbf{~ R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$

4. Lubricants costs:

Engine oil $(E O L)=1.7048+0.03319^{*} \mathrm{RF}+0.0005241^{*}(\mathrm{RG} / \mathrm{W})$ (EOL) $=1.7048+0.03319 * 24.97+0.0005241 *(2000 / 7)$
(EOL) $=\mathbf{2 . 6 8}$ liters $/ \mathbf{1 0 0 0} \mathbf{~ k m}$
Other oil (OL) $=1.631+.05167^{* R F}+.001867^{*}(\mathrm{RG} / \mathrm{W})$
(OL) $=1.631+0.05167^{*} 24.97+.001867^{*}(2000 / 7)$
$(O L)=\mathbf{3 . 4 5}$ liters $/ \mathbf{1 0 0 0 0} \mathbf{~ k m}$
Grease (G) $=2.816+0.2007 *$ RF
(G) $=2.816+0.2007 * 24.97$
(G) $=7.83 \mathrm{~kg} / 10000 \mathrm{~km}$

Unit cost: EOL = 130 Rs/liter

$$
\begin{aligned}
& \mathrm{OL}=248.25 \mathrm{Rs} / \mathrm{liter} \\
& \mathrm{G}=112.35 \mathrm{Rs} / \mathrm{kg}
\end{aligned}
$$

So, the Engine oil cost = 130*2.68 = 348.4 Rs/1000 km Other oil cost $=248.25^{*} .345=\mathbf{8 5 . 6 4 6} \mathbf{~ R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$ Grease $=112.35^{*} .783=\mathbf{8 7 . 9 7} \mathbf{~ R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$
So, the Lubricants cost $=348.4+85.646+87.97=522.016$ Rs/ $\mathbf{1 0 0 0} \mathbf{~ k m}$

5. Spare cost

Spare cost $(S P)=\left\{0.0018^{*}(R G-2000)^{*} 10^{-5}\right\}^{*} N P$
Where,
$\mathrm{NP}=$ cost of new vehicle $=4,50,600 \mathrm{Rs}$
SP $=\left\{0.0018^{*}(2000-2000)^{*} 10^{-5}\right\}^{*} 450600$
$\mathrm{SP}=0.00$ paisa $/ \mathrm{km}$
6. Maintenance Labor cost
(LC) $=0.5498^{*}$ SP
Where,
SP $=0.00$ paisa $/ \mathrm{km}$
So, LC $=0.00$ paisa/km
So, distance related economic cost $=\mathbf{4 2 8 6 . 4 + 5 6 . 5 8}$
$+522.016+0.00+0.00=4864.996$ Rs $/ 1000 \mathrm{~km}$

Time related economic cost

1. Fixed cost

$\mathrm{F}_{\mathrm{x}}=370.14 / \mathrm{UPD}$
Where,
UPD $=6.187^{*} \mathrm{~V}=6.187^{*} 56=346.472 \mathrm{~km} /$ day
$\mathrm{F}_{\mathrm{x}}=370.14 / 346.472=1.068 \mathrm{Rs} /$ year
So, $\mathrm{F}_{\mathrm{x}}=1.068 \mathbf{R s} / \mathbf{1 0 0 0} \mathbf{~ k m}$

2. Depreciation cost

DC $=70.85 / \mathrm{UPD}=70.85 / 346.472=0.2045 \mathrm{Rs} / \mathrm{km}$
So, DC = 204.5 Rs/1000 km

3. Passenger time cost

$\mathrm{PT}=227.82 / \mathrm{V}=227.82 / 56=4.068 \mathrm{Rs} / \mathbf{k m}$
So, $\mathrm{PT}=4.068^{*} 1000=4068 \mathrm{Rs} / \mathbf{1 0 0 0} \mathbf{~ k m}$
So, time related economic cost $=1.068+204.5+4068=$ 4273.568 Rs/1000 km

Total VOC $=\mathbf{4 8 6 4 . 9 9 6}+4273.568=9138.564 \mathrm{Rs} / \mathbf{1 0 0 0}$ km

Comparison of VOC by IRC and HDM-VOC Model with Their Respective Parameters at 100 kmph

S.No.	Element	Cost by IRC (Rs/1000 km)	Cost by HDM-V0C $\mathbf{(\$ / 1 0 0 0}$ km)	Cost by HDM-Voc in Rs $\mathbf{(1 \$ ~ = ~ 6 5 ~}$ Rs)
1	Fuel	4137.445	98.01	6370.65
2	Tire costs	56.23	02.99	194.35
3	Lubricant cost	503.13	12.81	832.65

4	Spare cost	0	-	-
5	Maintenance labor cost	0	4.99	324.35
6	Fixed cost	1.03	-	-
7	Depreciation cost	197.44	29.96	1947.4
8	Crew time	-	15.00	975
9	Maintenance parts	-	10.98	713.7
10	Interest	-	15.73	1022.45
11	Overhead	-	0.00	0.00
12	Passenger time	3927.9	0.00	0.00
13	Cargo holding	-	0.00	0.00
14	TOTAL VOC	$\mathbf{8 8 2 3 . 1 7 5}$	$\mathbf{1 9 0 . 4 7}$	$\mathbf{1 2 3 8 0 . 5 5}$

Comparison of VOC by IRC and HDM-VOC Model with Their Respective Parameters at 120 kmph

S.No.	Element	Cost by IRC (Rs/1000 $\mathbf{k m})$	Cost by HDM-VOC $\mathbf{(\$ / 1 0 0 0}$ $\mathbf{k m})$	Cost by HDM-Voc in Rs $\mathbf{(1 \$ = 6 5}$ Rs)
1	Fuel	4286.4	111.34	7237.1
2	Tire costs	56.58	02.99	194.35
3	Lubricant cost	522.016	12.81	832.65
4	Spare cost	0	-	-
5	Maintenance labor cost	0	4.99	324.35
6	Fixed cost	1.068	-	-
7	Depreciation cost	204.5	28.40	1846
8	Crew time	-	12.50	812.5
9	Maintenance parts	-	10.98	713.7
10	Interest	-	14.32	930.8
11	Overhead	-	0.00	0.00
12	Passenger time	4068	0.00	0.00
13	Cargo holding	-	0.00	0.00
14	TOTAL V0C	$\mathbf{9 1 3 8 . 5 6 4}$	$\mathbf{1 9 8 . 3 4}$	$\mathbf{1 2 8 9 1 . 4 5}$

CONCLUSION:

* In this thesis for assessing an arranged ROB permits a snappy and exact survey of vehicle working expense at that ROB. The HDM-VOC model is assessed in light of geometric qualities (levels, length and flat bends and vertical bends), speed and street surface write and condition. The yield of the HDM-VOC display is the VOC while the vehicle goes along a highway at configuration speed. This VOC is framed by various kinds of costs like fuel cost, oil cost, tire cost and so forth.
* Since the utilization of a few parameters in HDMVOC was distinct in compare with IRC rules, so I calculated the VOC according to IRC rules as well. (IRC SP 30:2009)
* By using HDM-VOC demonstrate for ROB at LC-70, Sitapura Jaipur, VOC at configuration speed 100 and 120 kmph has been calculated for a small passenger car. By results we can say that VOC for speed 100 kmph was lesser than what it was for speed 120 kmph . Along these lines the geometric plan of ROB can be improved for the situation configuration speed of 100 kmph .
* The model might be valuable in discovering fuel proficient and naturally well disposed thruways with respect to the fact that the vehicular fuel utilization straight forwardly influences the cost of vehicle task as well as produces ozone harming substances and toxin emissions.
* By the utilization of the IRC rules for ROB at LC-70, Sitapura Jaipur, VOC at speed 100 and 120 kmph is calculated for a small passenger car. By the determination of VOC for these two outline speeds, I can state that VOC for 100 kmph was lesser. Along this the design can further be improved for configuration speed 100 kmph for getting more reduced cost of vehicular operations.

FUTURE SCOPE:

* VOC can be calculated for all types of vehicles by using this model.
* Fuel demand can easily be determined by using this model.
* VOC calculations always allow us to identify the requirements of highway's repair and maintenance works.
* The modification of further updating of model can also be achieved by these requirements.

REFERENCES

1. Dr. Mary M. Robbins and Dr. Nam Tran, "The Impact of Pavement Roughness on Vehicle Operating Costs", NCAT Report 15-02, 2015
2. "Reimbursement for Business Use of Personal Vehicles", CFS Annual Report - 2016
3. Rodrigo S. Archondo-Callao and Asif Faiz, "Estimating Vehicle Operating Costs", World Bank technical paper, ISSN 0253-7494; 234, January 1994
4. "Transport and Main Roads", Cost-Benefit Analysis Manual, First Edition, February 2011
5. Madhu Errampalli, Velmurugan, Deepa Thamban, "Effect of Congestion on Fuel Cost and Travel Time Cost on Multi-Lane Highways in India", IJTTE, 5(4):458-472, 2015

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 05 Issue: 06 | June-2018
www.irjet.net
p-ISSN: 2395-0072
6. Kunal Jain, S.S. Jain, MPS Chouhan, "Vehicle Operating Cost Updation for Monetary Evaluation of Road Projects in India", IJPC Paper 158-2, 2013
7. "Transportation Cost and Benefit Analysis", Texas Research and Development Foundation (TRDF).
8. Klaubert, E. C., "Highway Effects on Vehicle Performance", FHWA-RD-00-164, US Department of Transportation, Federal Highway Administration, Washington, DC. 2001
9. Jones, R. T., "Layout of Roads", Journal, Indian Roads Congress, Vol. V, 1940-41
10. IRC, "Manual for Survey, Investigation and Preparation of Road Projects", Special Publication: 19, 1981
11. Kadiyali, L.R., N.B. Lal, M. Satyanarayana, and A.K. Swaminathan, "Speed Flow Characteristics on Indian Highways", Journal of Indian Roads Congress. Volume 52 (2), pp. 233-251, 1991
12. CRRI, "Updation of Road User Cost Study Data", Final Report, Volume - I and II submitted to Ministry of Surface Transport, New Delhi, 2001
13. De Weille, J., "Quantification of Road User Savings", World Bank Staff Occasional Paper No. 2, Washington, DC. 1966
14. Kadiyali, L.R and E. Vishwanathan, "Study for Updating Road User Cost Data", Journal of Indian Roads Congress. Volume 54-3, pp. 645-663, 1993
15. Some other references have tabulated below:

S. No.	Name	Author	Title
1.	irc.gov.in.sp $023: 1993$	IRC	Vertical Curves for Highways
2.	New Zealand NZVOC	-	VOC
3.	2013 IJPC	São Paulo	International Journal of Pavements Conference, São Paulo
4.	irc sp 30:2009	IRC	Manual on Economic Evaluation of Highway Projects in India
5.	irc 38:1988	IRC	Guidelines for Design of Horizontal Curves for Highways and

			Design Tables
6.	Texas Research and Development Foundation (TRDF)	-	VOC model
7.	World Bank Publications. Washington, DC. 1987.	Chesher, A., and Harrison, R.	Vehicle Operating Cost: Evidence from Developing Countries
8.	www.mathalino.com	-	Spiral Curves Elements
9.	Highway Engineering	i.K.Khanna,	Highway C.E.G.Justo Engineering
10.	Cost-benefit Analysis manual, First Edition, February 2011	-	Transport and Main Roads.
11.	irc 86:1983	IRC	Geometric design standards for Urban roads in Plains
12.	www.kullabs.com	-	Summit and Valley Curves

