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Abstract - Compressive sensing is an emerging multi-
disciplinary field that focuses on reconstructing an unknown 
signal from a very limited number of samples. This theory has 
many applications in signal processing and imaging. This 
paper provides an overview of image reconstruction process in 
MRI (Magnetic Resonance Imaging). There are different types 
of reconstruction algorithms each having their strengths and 
weaknesses. In this paper, we review some algorithms that 
reconstructs MRIs using compressive sensing. 
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1. INTRODUCTION  

The conventional approach of reconstructing signals or 
images from processed data follows Shannon’s celebrated 
theory "which states that the sampling rate must be  at least 
twice the highest frequency(i.e., fs≥2fm,)". For this process 
requirement of number of samples is large. Similarly, the 
fundamental theorem of linear algebra says that only when 
the number of measurements of a discrete finite-dimensional 
signal is at least as large as its length, reconstruction can be 
ensured. The sureness of above two theories depends on the 
amount of samples i.e. more samples are needed to get more 
accurate results. Compressive sensing is a method for 
collecting and reconstructing an audio or image signal with 
possible advantages in number of applications. It requires 
less number of samples than Nyquist sampling. 

2. COMPRESSIVE SENSING 

Theory of compressive sensing cites that recovery of some 
signals and images from very less number of samples or 
measurements than conventional methods is possible. For 
this, CS relies on two theories:  

Sparsity 

Many signals are sparse, that is, they contain a set of 
coefficients close to zero or equal to zero if they are 
represented in the transformed domain. Theory of 
compressive sensing utilizes the fact that many natural 
signals are compressible or sparse in a way that they have 
brief  representations when expressed in the proper basis Ψ. 

Incoherence 

Incoherence grants the duality between frequency and 
time. It indicates that the object with sparse representation in 
Ψ must be expanded in the domain in which they are 
acquired. Incoherence is necessary for good linear 
assessment in the new space. 

 

Figure 1: Sparsity[14] 

 

Figure 2: Compressive Sensing[15] 

Undersampled measurements 

Consider a scenario where a vector x where x∈RN is 
reconstructed from measurements y about x of form 

 

 

 

Information about the unknown signal is collected by 
sensing x against K vectors  ∈ RN. Area of interest here is 
the “underdetermined” case K<<N, where number of 
measurements is vey less than unknown signal values. This 
type of problems occur countless times. In biomedical 
imaging for example, number of measurements of image of 
interest is very fewer compare to number of unknown 
pixels.0 
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Figure 3: Undersampled Measurements 

At first sight, solution to this type of problems seems 
impossible, as number of examples where it clearly cannot be 
done is easy to find. But now assume that the signal x is 
compressible, that it primarily depends on a number of 
degrees of freedom less than N. Then this presumption 
thoroughly changes the problem, forming the search for 
solutions achievable. We can recognize that correct and at 
times perfect reconstruction is achievable by solving a simple 
convex optimization problem. 

CS has successfully been applied in a wide variety of 
applications in recent years, including optical system 
research, shortwave infrared cameras, photography, audio 
processing , MRI and so on. Rate of MRI collection is bound by 
requirements of the immense acquisitions in phase-encoding 
direction. As the theory of compressive sensing MRI with l1-
regularization criteria termed CS-MRI emerged it has gained 
popularity. It capitalizes the signal sparsity itself to 
reconstruct the MRIs from very less  samples than required 
by traditional methods, which notably reduces the scan time. 
Though, a more accurate determination of a non-sampling 
signal using compressive sensing depends on the 
achievement of two criteria: (a) sufficient sparsity of the 
MRIs; and (b) a high level of incoherency between the 
sampling matrix and the sparsity basis. 

Compressed Sensing was suggested by Donoho [1] and 
Candes [2] at the earliest time. The stipulation of  
conventional theory for frequency of sampling is broken by 
this theory. By using it quantity of data sampling is reduced 
and it saves data storage space and computation time. Lustig 
introduced CS for MRI image collection and reconstruction 
for first time in [3]. 

The generic l1 minimization works very well with the 
images with sparse features. So MRI images like abdomen 
images and brain images are first needed to be transformed 
to a sparse representation so they can be reconstructed 
successfully. The method used to sparsify the MR image plays 
an important role in the quality of the resulting CS-MRI 
reconstruction. In most algorithms transforms like DWT and 
DCT. Some fast numerical algorithms, based on an operator 
splitting algorithm (TVCMRI [4]) and variable splitting 
algorithms (RecPF [5]), are developed for use with TVL1-
based CS-MR imaging reconstruction. 

To accelerate the reconstruction process SVD as a data-
adaptive sparsity basis is proposed by Hong et al. [6] and it is 

the sparsifying transforms to get a better image quality. 
Majumdar A. in [7] proposes algorithm that exploits the 
nuclear norm regularization of the implementation of the CS-
MRI reconstruction where nuclear norms have been 
described as the sum of singular MRI, and the outcomes 
shows that this reconstruction strategy is much faster than 
any other method. 

3. Literature Review 

Output of random under-sampling adds noise-like 
interference. In the sparse transform domain, there are 
significant coefficients that exceed the interference. In [3] 
practical schemes for incoherent under sampling are 
analyzed and developed by means of their aliasing 
interference. The reconstruction is constrained by the data 
fidelity constraint and is done by minimization of l1-norm of 
a transformed image. 

Information, such as organ borders, is pretty rare in many 
MRIs. With compression sensing, the same MR image can be 
reconstructed from a very limited set of measurements while 
dramatically shortening the duration of MRI scans. To handle 
this in [4], it uses a model that collectively reduces total 
variation, l1-norm, and a least squares measure. 

The signal is reconstructed to a minimum of the sum of 
the sum of the three terms of the l1-norm corresponding to 
the total variation of the fixed transform and least squares 
data. RecPF([5])  algorithm is very fast because it requires 
only a small amount of iterations, and each iteration involves 
two fast Fourier transforms and simple shrinkages. RecPF 
requires little parameter adjustment, and has a very large 
regularization/fidelity weight parameter with a dynamic 
range that consistently performs well. 

To achieve the practicality of using data adaptive sparsity 
in CS-MRI, a method using SVD as data adaptive transform is 
proposed by Hong et al.[6], which does not need to pre-
process the image. This approach may potentially sparsify 
more types of MRIs than already defined transforms, and still 
be valid in the CS-MRI framework. 

In [7], it is shown that rather than using only the 
sparseness or ranking deficiency of the image, the superior 
reconstruction results can be accomplished by combining the 
sparsity of the transform domain with the rank deficiency. 
This method presents a comprehensive l1-norm and nuclear 
norm minimization problem and obtains algorithm of first 
order to solve it. 

Contrary to traditional CS-MRI that only depends on the 
sparsity of MRIs in gradient or wavelet domain, in [8] it uses 
the wavelet tree structure to correct CS-MRI. This tree-based 
CS-MRI problem is divided into three simpler sub problems 
then each of the sub problems can be efficiently solved by an 
iterative scheme. 

For CS-MRI the way image is sparsified severely affects its 
reconstruction quality. In [9] a graph-based redundant 
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wavelet transform is showed to sparsely represent MRIs in 
iterative image reconstructions. For this transformation the 
image patch is taken as the vertex, with the difference as the 
edge, the shortest path on the graph minimizes the difference 
between all image patches. 

The group sparse method, which exploits additional 
sparse representations of the spatial group structure, can 
increase the degrees of sparsity, as a result better 
reconstruction performance can be obtained. In [10] , an 
efficient super-pixel/group assignment method, simple linear 
iterative clustering (SLIC), is incorporated to CS-MRI studies. 
Using variable segmentation strategy and classical 
alternating direct method the problem of group sparseness is 
solved. 

 

Table -1: Performance Parameters 

Paper Reduce 

Scan 

Time 

Resolution 

Improvement 

SNR 

Improvement 

[3]    

[4]    

[5]    

[6]    

[7]    

[8]    

[9]    

[10]    

 

 

 

Table -2: Summary Table 

Paper Summary Research Gap 

Sparse MRI [3] Focus of this work is only on Cartesian sampling. 

The l1 norm of a transformed image is minimized 
for reconstruction. 

Work can be extended for non-Cartesian CS. 

Algorithm using 
total variation and 
wavelets[4] 

Reconstruction algorithm jointly minimizes the l1 
norm, total variation, and a least squares 
measure. 

This algorithm can be speeded up by 
combining optimization methods such as 
smoothing and more efficient line search. 

TVL1-L2 [5] Sum of l1-norm of a certain transform, total 
variation, and least squares data fitting is 
minimized for reconstruction. 

Simple shrinkages and two fast Fourier 
transforms. 

 

CS with SVD sparsity 
basis[6] 

SVD as a data-adaptive transform. 

 

Dynamic MRI. 

Rank deficiency for 
MR image [7] 

Combined nuclear norm and l1-norm is 
minimized for reconstruction. 

Application to the multicoil parallel MRI 
problem 

Three-dimensional (3D) MR volume 
reconstruction. 

Wavelet structure in 
CS-MRI[8] 

Wavelet tree structure for improving CS-MRI. 

Tree-based CS-MRI : The problem is broken down 
into three simpler subproblems, each of which 
can be effectively solved by an iterative scheme 

This algorithm can be applied for double-
density dual-tree wavelet transform with 
small changes on group setting. 

Graph-based 
redundant wavelet 
transform[9] 

A graph-based redundant wavelet transform is 
introduced. 

The l1 norm regularized formulation of the 
problem is solved by an alternating-direction 
minimization with successive algorithm. 

Parallel processes to reduce the computation 
time caused by redundancy 

Super-pixel 
algorithm and group 
sparsity[10] 

Simple linear iterative clustering (SLIC) and 
super-pixel/group assignment method is 
integrated to CS-MRI. 

Combing of sparsity regularization with group 
sparsity regularization methods to further 
improve the CS-MRI reconstruction quality 
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4. Discussion 

Dynamic MRI reconstruction methods are generally 
classified in two classes – offline and online. In offline 
methods image is reconstructed after all the data is collected. 
In online methods image is reconstructed as each time frame 
is acquired. Most of the previous studies in dynamic MRI 
reconstruction were performed using offline methods. These 
studies exploited the spatio-temporal correlation of the MRI 
data to express it in a sparse fashion in some transform 
domain. In online reconstruction each time frame is 
reconstructed individually, given the reconstructed frames 
till the previous instant.  

Compressive Sensing (CS) based techniques were selected 
to recover the dynamic MRI videos. For most applications the 
offline reconstruction is satisfactory, but in cases where the 
frames need to be visualized in real-time, for example in any 
tracking application or image guided surgery, offline 
techniques cannot be employed. Work in [13] follows a 
prediction-correction framework. Given the previous frames, 
the current frame is predicted based on a Kalman estimate. 
This work is inspired from [11,12]. In [11] instead of 
predicting the frame, it simply uses the past frame as the 
reference and generates the difference between the previous 
frame and the current frame presuming that the difference is 
sparse. In [12] an auto-regressive model predicts the current 
frame and the difference image is evaluated using CS 
reconstruction.  Work in [13] is different from [11] in two 
aspects: 1. It uses Kalman prediction for the current frame, 
and 2. It employs a greedy algorithm for faster recovery. 

A reference frame is predicted for the current instant 
given the reconstructed frames till the previous instant. The 
difference between the predicted frame and the current 
frame is corrected using the k-space samples of the current 
instant. 

 

Here xp denotes the predicted frame. Given the previous 
frames, we employ a Kalman predictor to estimate xp. If the 
difference between the current frame and the predicted 
frame is normally distributed, a Kalman filter based 
correction would be optimum. It shows that, such is not the 
case. The difference between xp and the actual frame (xp - xt) 
will be sparse and hence a greedy sparse recovery algorithm 
called Stagewise Orthogonal Matching Pursuit(StOMP) is 
used for reconstruction. The difference frame, once 
reconstructed is added to xp to obtain the final measure of the 
current frame xt. 

For reconstructing images of size 128 × 128 the 
Differential CS [12] takes about 0.23 s and with images of size 
256 × 256 about 0.50 s. The timing for kalman method (using 
StOMP) is about 0.12 s for 128 × 128 images and 0.25 s for 
256 × 256 images. The improvement in run-time owes to the 
fact that it uses a greedy algorithm for recovery whereas [12] 
employs l1-minimization. In future work advancements in 

reconstruction times is possible if the algorithm is 
transferred to C/C++ from Matlab. 

We can see that this type of algorithms give much faster 
results compare to other online reconstruction algorithms. 
For casual/online MRI reconstruction schematic diagram of 
proposed method is as shown below. 

 

Figure 4: Schematic Diagram of Proposed Approach 

5. CONCLUSION 

In this research work we reviewed papers on different 
MRI reconstruction algorithm. Each algorithms exploits 
different parameters such as rank, transform domain, 
sparsity degree etc. and takes different approach for 
reconstruction. After studying these methods, a method 
based on prediction-correction framework is considered 
better for online MRI reconstruction as it is much faster. 
Different prediction methods can be applied to this algorithm 
to generate better results. 
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