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Abstract - The application of Artificial Neural Networks 
(ANNs) has increased in many fields of engineering and 
sciences. In groundwater studies, ANNs have been successfully 
used to solve many problems. In this research, the literature 
review shows that ANNs have been applied successfully in 
groundwater hydrodynamic, water management, water 
resources, hydrochemistry, time series forecasting, hydro-
geotechnical engineering, sea-aquifer interaction, hydro-
geochemistry, data collection in harsh environments and pit 
dewatering. The aim of this research is to provide an overview 
of the capacity of ANNs to solve some hydrogeological 
problems. This paper does not intend to show each single 
application of ANNs that can be found in the literature.  
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1. INTRODUCTION 

Artificial Neural Networks (ANNs) are part of Artificial 
Intelligence. They are a mechanism that reproduces the 
cognitive function of the brain by simulating its architecture. 
By imitating the human brain’s structure and function, ANNs 
are well-known to be powerful in solving complex, noisy and 
non-linear problems (Hsieh, 1993). They are successfully 
used for approximating functions, task classifications and 
clustering (Allende et al., 2002; Hsieh, 1993; Khashei and 
Bijari, 2009; Wilamowski, 2007). ANNs learn from the 
available data describing the behaviour of a system and 
attempt to establish a relationship between these data, even 
if the physical mechanisms controlling the behaviour of the 
system are poorly understood. They are thus suitable to 
model the complex behaviour of aquifers which by nature are 
anisotropic and heterogeneous. 

The learning and generalisation processes of ANNs are based 
on neurophysiological processes, and are described through 
mathematical relations that mimic the neurophysiological 
functioning. 

2. NEUROPHYSIOLOGICAL PROCESSES 

The human brain contains almost 100 billion neurons with 
1 000 to 10 000 synapses by neuron. The way the brain 
processes information is not yet well known, although there 
are many available applications (Ellis et al., 1995; Park et al., 
2009, Goh et al., 2005; Cho, 2009; Shi, 2000). Neurons can be 
defined as biological cells which have body cells and nuclei. 

Information is collected by fine structures called dendrites. A 
neuron produces an electrical signal and sends it through an 
axon, which is divided into several branches. That electrical 
signal is converted in an effect at each end of the branch by a 
synapse which then generates activity in connected neurons. 

When a neuron is excited enough, compared to its input, it 
generates electricity and sends its signal to its axon. Learning 
occurs when the effectiveness of the synapses changes, 
causing neurons to influence each other. 

3. MATHEMATICAL MODELS 

Biological neurons can perform various tasks such as body 
recognition, signal processing and generalisation. The 
performance of the neurons can be described by 
mathematical relations, which can be transformed into 
algorithms, leading to the development of Artificial 
Intelligence. ANNs are models of the neurophysiology of the 
brain that may be described by their components, descriptive 
variables and interactions between components (Rojas, 
1996). Together, the components of the ANNs and the 
interactions between these components form the 
architecture of the ANNs. 

3. 1. NEURAL NETWORK ARCHITECTURE 

An ANN is based on an interconnection of nodes, called 
neurons, that works as a collective system. This system 
comprises neurons and links. Each link has a weight, which is 
a numerical value representing the connection strength 
between the neurons (see Figure -1). The sum of the input 
weights is converted to outputs through a transfer function 
(TF) (Wilamowski, 2003). 

ANNs contain three kinds of layers: 

- An input layer which has the predicator variable; 

- One or more hidden layers which function as a 
collection of feature detectors; 

- An output layer used to produce a response relative 
to the inputs. 

ANNs can function using either feed-forward or feedback 
methods, using single or multiple hidden layers. 
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Figure -1: Example of an ANN with one hidden layer (Li E., 
1994) 

3. 1. 1 FEED-FORWARD NETWORKS 

Feed-Forward Neural Networks (FFNNs) are widely used. 
One such FFNN is the Multi-Layer Perceptron (MLP). In these 
neural networks, information progressions are 
unidimensional going from input layer to output layer 
through hidden layers (Millar and Calderbank, 1995). 

3. 1. 2 FEEDBACK NETWORKS 

Feedback Networks (FBNs) are neural networks that process 
information in both directions by introducing loops in the 
network. They have an interactive or recurrent architecture. 
Their output is often used to create feedback connections in 
single layer organization. They can become very complex, but 
are often useful for solving complex problems (Rojas, 1996). 

3. 2 TRANSFER FUNCTION 

An ANN should be able to reproduce the correct output for 
the related inputs. Its behaviour depends on the weights and 
the input-output function operating at each neuron, called the 
transfer function. While using an ANN, the choice of the 
transfer function can deeply impact the behaviour of the 
whole network. The most commonly used transfer functions 
are (Hajek, 2005): 

- Linear, where the output from the neuron is directly 
proportional to the total weighted input that it 
receives from the other neurons connected to it; 

- Threshold, where the output is set to a higher or 
lower level depending on whether the total input is 
greater or less than some threshold value; 

- Sigmoidal (logistic), where the output changes 
progressively but not linearly according to changes 
in the weighted input; 

- Hyperbolic tangent, where the fluctuation between 
consecutive inputs is relative to the hyperbolic 
tangent derivative. 

It is important to note that the threshold, sigmoidal and 
hyperbolic transfer functions are non-linear (Pushpa and 
Manimala, 2014). 

 

3. 3 OPTIMISATION OF THE MODEL 

The process of optimisation of ANNs is also called the 
“training” or “learning” process. According to Rumelhart et al. 
(1986), the most commonly used method is the back-
propagation algorithm. This algorithm is non-linear and is 
more often applied when using multi-layer perceptrons 
(Brown and Harris, 1994). Perceptrons are algorithms, which 
can be computed by a binary variable coding. They can be 
linear or spherical according to the way outputs are 
computed. It is expensive to compute the back-propagation 
algorithm, especially during the learning process. It is then 
important to find an alternative simplified method, which can 
speed the learning process and produce reasonable outputs 
for new inputs. 

3. 4 STOPPING CRITERIA 

When optimising ANNs, it is important to decide when the 
training process has to be stopped. The stopping criteria 
determine when the ANN has been optimally trained. The 
training process can be stopped when a) a fixed number of 
training inputs have been reached, or b) when the training 
error becomes acceptably small. The first stopping criterion 
could lead a prematurely cessation of training, while the 
second could lead to over-training. 

Cross-validation is a valuable technique to avoid such 
problems (Smith, 1993). When available inputs are limited, 
Amari et al. (1997) suggested using the cross-validation 
technique because it presents many advantages. In this 
technique, the data are divided in three parts: training, 
testing and validation. The training part is used to train and 
build the model. The testing part measures the ability of 
generalisation of the model. The training is stopped when the 
error of the testing set starts to increase, even if the number 
of iterations has not been reached. The validation part is used 
for performance analysis. It is also possible to divide the 
dataset into two parts where one part is used for training and 
the other for validation. 

3. 5 APPLICATION OF ANNs IN GROUNDWATER STUDIES 

An ANN can be seen as a universal approximator. Its ability to 
learn and generalise makes the ANN a powerful tool able to 
solve various complex problems, such as: pattern recognition, 
stock forecasting, non-linear modelling, and classification of 
data according to type. In geohydrology, ANNs have had a 
significant growth since Rumelhart et al. (1986) developed 
their computational mechanism. This approach is now used 
in all branches of engineering and the sciences. 

Many water-related problems need to be solved by prediction 
and estimation. Most hydrogeological processes show high 
fluctuation, both spatially and temporally. They are often 
non-linear physical processes. Often there is large 
uncertainty in the parameters affecting the processes 
(McCuen, 1997). 
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Geohydrologists or hydrogeologists have to provide answers 
to complex problems related to water management. To 
provide answers to these problems, ANNs offer the 
possibility of finding relationships between the inputs and 
outputs of processes even if these processes are not well 
understood. The applicability of ANNs in geohydrology is 
extensive. These networks can identify the relation between 
noisy data and help to generate simple rules (Sarkar, 2012). 

ANNs can be applied to mimic temporally and spatially 
distributed human influences, such as water extraction 
patterns, on a regional scale with high predictive accuracy for 
complex groundwater system, as shown by Feng et al. (2008). 
Sensitivity studies done with ANNs are an effective and 
efficient tool, which can help decision-makers to understand 
the impact of human activity on the aquifer. 

Using ANNs, Joorabchi et al. (2009) found that tide variation 
is the main parameter impacting the water table in coastal 
anisotropic aquifers. Abrahart and See (2007) concluded that 
these networks can be used to produce understandable non-
linear transformations in the study of aquifers.  

The power of ANNs to model complex non-linear problems is 
one of its strengths which can provide output datasets ready 
to be used in other areas of groundwater research, such as 
hydrochemistry (Seyam, 2010) and hydrodynamics (Aziz and 
Wong, 1992). 

ANNs are known to be able to generate accurate predictions. 
The accuracy of these networks may be further improved by 
using them in combination with numerical models 
(Szidarovszky et al., 2007). This hybridisation method can be 
used to evaluate the performance of Finite Difference-based 
models and ANNS, as shown by Mohanty et al. (2013). 

ANNs are able to forecast time series (Sudheer et al., 2002; 
Yoon et al., 2007; Kumar et al., 2013) and compared to the 
performance of a hybrid model, the results suggest that both 
the ANN and hybrid model can successfully be used for the 
prediction of the temporal behaviour of groundwater levels. 

ANNs combined with numerical based-models have been 
used for predicting liquefaction potential in soil deposits 
(Farrokhzad et al., 2010). This combination provides results 
that are more accurate. 

In studies to protect coastal aquifers against seawater 
intrusions, ANNs have been developed, optimized and then 
combined with numerical models to provide better 
predictions, even for complex pumping system (Kourakos 
and Mantoglou, 2009). Additional to the study of 
groundwater quality in coastal areas, Yoon et al. (2011) 
developed two hydrogeological models based on Support 
Vector Machines (another form of machine learning) and 
ANNs to forecast the short-term fluctuations of the 
groundwater table of a coastal aquifer in Korea. It was 
observed that the Support Vector Machines gave more 
accurate results for long prediction times than ANNs. 
Seawater intrusion can increase the salinity of islands. It was 

observed by Banerjee et al. (2011) that when the pumping 
rate increases, the salinity of the aquifer also increases. Thus, 
they used both ANNs and SUTRA (Saturated-Unsaturated 
Transport; an FEM code) to predict the minimum acceptable 
pumping rate which would leave the salinity below an 
acceptable threshold. Comparing the results founds with 
SUTRA and ANNs to the observations, they concluded that 
ANNs provided more accurate predictions even though these 
networks required fewer inputs than SUTRA. 

Juan et al. (2015) used ANNs to forecast suprapermafrost 
groundwater levels. Since permafrost areas are typically 
harsh environments, data collection in these areas is 
demanding, with the result that only a limited number of 
studies have focussed on understanding the behaviour of the 
aquifers in such areas. Juan et al. (2015) stated that the 
groundwater hydrodynamics of permafrost areas is not 
controlled by Darcy flow, but by thermodynamics. The 
authors employed ANNs in their investigations and used 
temperature, rainfall data and previous suprapermafrost 
groundwater levels as inputs to the ANNs to predict the 
suprapermafrost groundwater level. They observed that the 
results were satisfactory when compared to the field 
observations, although the accuracy of the predictions 
decreased with increasing prediction time. 

Mohanty et al. (2013) developed a groundwater model based 
on FDM, as well as ANNs, to predict the depletion of water in 
a region of India. After comparing the results of these studies 
to the field observations, they found ANNs to be more 
accurate for short-term predictions while FDM are more 
suitable for long-term predictions. They therefore 
recommended the combined use of these two methods to 
complement one another and ensure good decision-making 
in groundwater management. 

The coupling of numerical models and ANNs have been used 
to evaluate the interaction between rivers and aquifers, 
providing rapid results. These hybrid models can easily be 
extended to other complex scenarios (Parkin et al., 2001). 
Tapoglu et al. (2014) combined the use of ANNs and Kriging 
methods to predict the groundwater level changes in Bavaria 
(Germany). They used the hydraulic head data recorded at 64 
piezometers to train 64 ANNs, one for each piezometer. At 
positions removed from the piezometers interpolation with 
Kriging was used to estimate the hydraulic heads. It was 
found that this approach was powerful and required few 
inputs, making it a useful tool for the prediction of 
groundwater level changes in areas with limited geological 
and hydrogeological data. 

Hybridisation of approaches were shown in the last decade to 
be a more powerful technique for estimation and prediction 
of groundwater behaviour (Yeh, 1992; Das and Datta, 2001). 
Thus, Bahrami et al. (2016) developed a hybrid model to 
predict the groundwater inflow during the advance of an 
open pit during mining. First they developed an ANN to 
perform the predictions. Since the performance of ANNs 
depends on the architecture of the network and a proper 
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selection of weights for the connections between neurons, the 
authors used the Genetics Algorithm (GA) and Simulated 
Annealing (SA) to determine initial weights so as to obtain 
more accurate solutions. Thus, they developed a hybrid 
model based on ANN-GA and ANN-SA to predict the 
groundwater inflow during the pit advance. The comparison 
between the measured groundwater inflows and the 
predicted inflows gave better results for hybrid models than 
when using a simple ANN. 

Ardejani et al. (2013) used ANNs to predict the water table 
rebound in an excavation were the water table was below the 
floor of the pit. The authors stated that the methods 
commonly used to predict groundwater rebound require a lot 
of inputs, such as hydraulic conductivities, transmissivities, 
initial hydraulic heads, rainfall data and specific storages. 
Accurate information on these parameters is often difficult to 
obtain. Furthermore, since the system is nonlinearly 
dependent on these parameters, inaccuracies in the 
parameter estimates could lead to large errors in the 
predicted responses. To avoid such errors, the authors used 
ANNs to predict the behaviour of the groundwater level 
during rebound in the open pit mine. The predicted hydraulic 
heads were compared to the observed field data, and a 
correlation coefficient (R-value) of 0.986 was obtained, 
showing good agreement between the observed and 
predicted water levels. 

However, if the available input data are sparse, it is important 
to use alternative methods, which start by using real or 
synthetic observations where the number of inputs can be 
reduced. Using this approach, Mohammadi (2008) employed 
synthetic observations generated from a groundwater model 
based on the finite difference method to implement an ANN 
model. The objective of his study was to investigate the 
applicability of ANNs in groundwater level simulation 
without any well boundary conditions and with limited data. 
In this research, different ANNs were used to predict the 
groundwater elevation. Although a few networks gave poor 
results, the majority of the ANNs predicted the groundwater 
elevations with a high degree of accuracy. It was therefore 
concluded that ANNs could be effectively used for 
groundwater modelling. 

7. DISCUSSION AND CONCLUSION 

From literature, it can be seen that ANNs have been used 
successfully in many area of groundwater studies including 
groundwater hydrodynamic, water management, water 
resources, hydrochemistry, time series forecasting, hydro-
geotechnical engineering, sea-aquifer interaction, hydro-
geochemistry, data collection in harsh environments and pit 
dewatering. 

Based on these applications, analysis indicate that ANNs 
provide better and more accurate results than “conventional 
methods” in many situations. 

Despite the accuracy of ANNs results, they are have some 
shortcomings (not enough theory for their development, 

inability to explain clearly how the solution was found). 
Thus, some guidelines has to be developed to make a clear 
design process of ANNs. 

Finally, despite these weaknesses, ANNs are powerful tools 
to model and predict nonlinear behaviours encountered in 
groundwater studies.  
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