
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3719

Approaching Highlights and Security issues in Software Engineering

under Mobile Application Development

Mohan Sai1, Muppa Sai Karthik2, Prof. Prabu S3, B V Pavan4, Mahesh Reddy5

1,2,4,5 UG Student, Dept. of Computer Science and Engineering, VIT, Tamil Nadu, India
3Professor, Dept. of Computer Science and Engineering, VIT, Tamil Nadu, India

---***---

Abstract - There has been huge development in the
utilization of mobile devices throughout the most recent
couple of years. This growth has led to millions of the software
application in the mobile applications. As per the current
estimate there are hundreds of thousands of mobile app
developers. In this paper discuss about present and future
research trends with various stages in the software
development life-cycle: requirements like functional and non-
functional, design and development, testing, and maintenance
and the evolution of the software engineering in the mobile
applications. And the various life cycle models are used for
various method based on the risk, security issues and
resources. While there are several non-functional
requirements based on the mobile application in this paper we
focus on resources and security. In this paper we discuss the
security issues of the software engineering for the mobile
application. And for each phase of the life cycle we discuss
about recent advances and then challenges in the current
work and the chances for the advances in the future in the
Mobile applications.

Key Words: SDLC, Mobile App, Software Process,
requirements, security issues, functional, non-functional

1. INTRODUCTION

In this paper, a mobile application is characterized as the
application created for the present age of mobile devices
prominently known as smart phones. These applications are
regularly dispersed through a stage particular, and unified
application showcase. In this paper, we in some cases allude
to versatile applications just as applications. In the previous
couple of years, we are watching a blast in the prominence of
cell phones and mobile applications [11]. Actually, late
market considers demonstrate that the brought together
application advertise for Apple's stage (IOS) and Google's
stage (Android), each have in excess of 1.5 million
applications [21]. These mobile application markets are to a
great degree famous among engineers due to the
adaptability and income potential. In the meantime, mobile
applications bring an entire slew of new difficulties to
programming experts - for example, challenges due to the
very associated nature of these devices, the one of a kind
dissemination channels accessible for versatile applications
like Google Play and novel income models like Premium and
membership applications. Software security issues showed
up in the most recent century when software began having
more dynamic parts in many applications. Be that as it may,

the procedure of software advancement did not go through a
develop designing procedure and did not contain an
unequivocal stage for security [29]. Over the time, the
quantity of the security issues has expanded particularly
with across the board of new applications, for example,
interpersonal organization stages despite the fact that the
software improvement process has adjusted an orderly
building procedure such as Software Development Life Cycle
(SDLC). Software Engineering research for mobile
applications and to draw a vision for its future. Note that we
confine to only the software designing themes for mobile
applications in this paper, and even that not thoroughly
because of space limitations (we skip themes like ease of use
or operational efficiency since a whole paper can be
composed on every one of these points). We don't examine
the headways in different territories of research for mobile
applications such as cloud based arrangements, or systems
administration in mobile applications.

Figure 1: The system for exhibiting the software
engineering in the mobile applications

The reason for this vision paper is to fill in as a kind of
perspective point for mobile app work. We begin by giving a
few foundation data on mobile apps. At that point, we
examine the present best in class in the field, relating it to
each of the software improvement stages, i.e., prerequisites,
advancement, testing, and support as appeared in Figure 1.
We likewise talk around two non-practical prerequisites:
vitality utilize and security of mobile apps. At last, despite
the fact that it isn't one of the software advancement stages,
we discuss the software engineering difficulties and
suggestions for adapting mobile apps. Alongside an exchange
of the cutting edge, we additionally present the difficulties as
of now looked by the analysts/designers of mobile apps. At
that point we talk about our vision for the eventual fate of
software engineering examination for mobile apps and the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3720

dangers included, in light of our encounters. Our expectation
is that our vision paper will help newcomers to rapidly pick
up a foundation in the zone of mobile apps. In addition, we
trust that our exchange of the vision for the territory will
rouse and control future work and construct a group of
scientists with shared objectives in regards to software
building challenges for mobile apps. An expression of alert
however - the dialog of the present cutting edge isn't
intended to be an orderly writing overview and the future
directions of research depend on our assessments that have
been affected by our insight into the research in this
community.

1.1 ORGANIZATION OF THE PAPER:

In this paper, in introduction (1) we have started with a
basic idea of what the topic is about. Then, accordingly we
have gone through the existing related works and among
them, few are mentioned in the literature survey section (2).
Continued with functional and non-functional (3,4) which
play a major role in any development. Then, by following the
traditional method, we have given a basic idea on the
development (5) and the testing (6) phase of a development.
Followed by the maintenance (7) of a project and the
conclusion (8) part.

2. LITERATURE SURVEY:

The most present day emphasis of the mobile apps began in
2007, at the point when Apple reported the original of the
iPhones. At a similar times Apple additionally reported the
incorporated market for mobile apps called the 'App Store',
through which, the end clients needed to download all their
apps. Not long after in 2008, Google conveyed their own
particular stage (Android) and their own app showcase the
'Android Market' (which was later renamed as 'Google Play').
Comparable app markets were discharged for the mobile
telephone stages created by Microsoft, and BlackBerry also.
With these other app markets, now the mobile app designers
have a much bigger client base to pitch to. It is assessed that
there are right now 2.6 Billion mobile telephone clients, who
generally possess advanced cells [9]. An outline of the
different partners in the realm of mobile apps is appeared in
Figure 2. Mobile apps have been around for quite a while
now. Back in the 1990s they were generally made by gadget
makers like Nokia and Motorola. These apps played out
certain fundamental undertakings.

Figure 2: overview of the stakeholders in the modern

mobile applications

Later on, remote specialist organizations began making apps
to separate the devices sold on their system to others. At a
similar time, outsider organizations began making apps for
the mobile stages like the Windows mobile OS and the
Symbian OS. These included recreations for the devices and
other utility apps. In any case, there was no incorporated
place where end clients could secure these apps. With the
introduction of app markets for each platform, now
developers have the ability to manage the distribution of
their software through one centralized market for each
platform. All designers of all shapes and sizes have the same
app advertise, along these lines making it a notwithstanding
playing field for anybody to succeed. Too, the app markets
made it simple for the designers to transfer their apps,
oversee updates to them, and push the most recent rendition
flawlessly to the end clients. Subsequently a blend of market
potential, convenience, and democratized stage, made it
exceptionally lucrative for engineers to construct mobile
apps.

With the expanded utilization of smartphones and mobile
apps by end clients, and improvement of these mobile apps
by software engineers, mobile apps turned into a
conspicuous territory for software building specialists to
analyze. One of the most punctual software building papers
on such mobile apps was the investigation of miniaturized
scale apps on the Android and BlackBerry stages by Syer et
al. [13], and one of the most punctual examinations on the
app markets was by Harman et al. [33]. From that point
forward, there have been bounty of concentrates on a wide
range of information that can be mined from the app
markets, with the app themselves being only one kind of
information. We think the expansion in such software
designing investigations on mobile apps are a result of two
reasons - (1) since the app markets are freely accessible, it is
presently conceivable to mine the information generally
effectively (albeit later in this segment we investigate where
scientists confronted inconvenience in getting this open
information), (2) a variety of new sorts of data that were
past not accessible are currently accessible and dependably
very much connected together. Some of these new types of
data are discussed and the photo of play store is shown in
figure 3. The app market also allows for the developer to
post release notes on each of the app’s versions. Analysts can
mine this data to decide how the apps are advancing.
Another snippet of data accessible in the app store for each
app is the contact data for the designer. In this manner,
presently analysts can contact app designers with anything
intriguing that they find about the app. We are additionally
ready to mine apps that are like the current app, and in this
manner look at how comparative or diverse an app is from
different apps. Knowing the similitude between apps is
additionally encouraged in the app advertises by the class
arrangement. Each app in the app store must be ordered in
one of numerous predefined classes. Hence, now as analysts
we approach apps that have been self-answered to be in a
similar area. This gives scientist’s huge potential to direct
research that can be controlled for the area of the app.
Frequently we see that a software building research

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3721

contemplate is done on an IDE, as Obscuration and another
OSS venture like the program Firefox [1]. In any case, we
don't realize what areas of applications that these outcomes
exchange to. In the realm of mobile apps, on the off chance
that we lead our exploration on just amusement apps, at that
point we can be more certain that our discoveries would
apply to other diversion apps.

Figure 3: Snapshot of app in App Store

3. FUNCTIONAL REQUIREMENTS

3.1 Recent Advances:

Various examinations have concentrated on requirement
extraction for mobile applications. In spite of customary
work on software requirements, which mainly focused on
investigation of the requirements and particulars archive,
the lion's share of mobile app-related investigations utilized
app audits posted by clients to extricate requirements. For
instance, Iacob et al. [3] utilized semantic guidelines to
identify highlight demands from client audits. At that point,
they compress the element solicitations to produce more
theoretical requirements. Galvis-Carreno and Winbladh [10]
extricate subjects from client surveys to modify
requirements. They demonstrate that their naturally
separated requirements coordinate with physically removed
requirements. Guzman and Maalej [4], [33] utilize common
dialect preparing (NLP) strategies to distinguish app
includes in the audits and utilize opinion examination to
decide how clients feel about app highlights. They likewise
contrast their extricated highlights with physically extricated
highlights and find that the removed highlights are rational
and applicable to requirements development tasks. Finally,
numerous past examinations have taken a gander at the app
surveys what's more, attempted to comprehend what
protests that clients have about an app [23], [9]. In a past
report, we physically investigated and labelled audits of iOS
apps to distinguish the diverse issues that clients of IOS apps
gripe about [15], [16]. We want to enable engineers to
organize the issues that they should be testing.

3.2 Future Challenges:

The way that requirements are separated from app audits
has its own particular difficulties. By and large and for some

apps, there may not be sufficient client audits or the nature
of the audits might be low. The greater part of the previously
mentioned investigations requires a high amount and nature
of client surveys. Chen et al. have done some underlying
work in naturally distinguishing audits that are educational
[13]. In any case, there is still more work left to be done here.
For instance, regardless of whether there are top notch
surveys accessible, we don't know whether we really got
every one of the surveys from the app store [2]. Commonly
app stores confine people in general to have the capacity to
see just a subset of every one of the surveys. On account of
Google Play, it is 500 audits. On account of the Windows
Marketplace, they enable you to see the greatest number of
as can be stacked in the page before the program crashes.
Along these lines, we have an examining issue, which has
been shown by Martin et al. [36]. One fascinating issue that
has just been tended to by app markets like Google Play is
the capacity for the designer to answer to client surveys
when they have tended to a requirement. Another test is the
applicability of the NLP methods used to extricate
requirements from app surveys.

3.2 Security Issues:

One of the security issues associated with seeking after the
above lines of look into is that we may have achieved the
limit points of NLP when breaking down ineffectively
composed client audits. Another hazard is that possibly
clients incline toward the highlights that they are given
previously they request it, and when the client whines about
the highlights, at that point it is as of now past the point of no
return. The main arrangement may be to fabricate a
refreshed audit framework for the app stores that permits a
superior instrument for include demands from the clients.

4. NON FUNCTIONAL REQUIREMENTS

4.1 Recent Advances:

One of the initially works identified with the estimation of
resources of mobile applications is Green Miner by Hindle et
al. [14] which is a committed equipment stage that
empowers estimation of resources utilization of mobile
devices. In other work, Hao et al. [17] propose a system that
use program examination to give per-direction resources
displaying. They demonstrate that their approach can
evaluate resources utilization to inside 10% of the ground
truth for Android apps. Liu et al. [23], introduce their
apparatus Green Droid that will naturally distinguish the
resources wastefulness bugs in Android apps. Thus Banerjee
et al. [9] distinguish resources bugs in mobile apps. Different
investigations performed experimental research on
resources utilization to furnish engineers with methods for
limiting it. For instance, Pathak et al. [20] proposed a
scientific classification of resources bugs in light of in excess
of 39,000 posts. They likewise propose a structure for the
troubleshooting of resources bugs on smartphones. Li et al.
[23] play out an exact investigation on 405 apps to better
comprehend resources utilization.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3722

4.2 Future Challenges:

A portion of the notable difficulties that face static analysis of
software, apply to the security inquire about specified here
as well. For instance, it is notable that most static analysis
approaches experience the ill effects of a high rate of false
positives. That issue in any case, might be less basic for
mobile apps since they tend to be littler in measure. Other
work relies upon information gave by the app engineers, for
example, the app's portrayal. Such approaches can't ensure
to perform well for applications that don't have all around
reported portrayals. There are numerous bearings of future
research that is conceivable around there. The most evident
of this is to propel the state-of-the-workmanship in static
analysis examine. Another more troublesome research issue
is to get it why engineers are composing helpless code in the
apps? How would we be able to enable them to avoid
unexpectedly made security issues for end clients? This line
of research expects us to get it step by step instructions to
compose secure software first. At that point we should have
the capacity to instruct the engineers. In the interim, would
we be able to manufacture pointers to decide whether an
app will probably have powerless code in it or not?

4.3 Security Issues:

A large portion of the work has been done on Android apps.
This is for the most part because of the way that the Android
stage is more open at that point different stages, e.g., iOS or
BlackBerry. Additionally, the apps are written in Java for
which there exists numerous decompiles and static analysis
apparatuses. Playing out our examinations on Android
causes a hazard regarding how applicable the proposed
approaches would work for mobile apps from other
platforms. Another hazard is in simply concentrating on
receptive approaches to security with a specific end goal to
tackle the present security issues and not concentrating on
preventive arrangements. Concentrating on receptive
approaches isn't only an issue with mobile apps yet with all
software. Be that as it may, with mobile apps because of the
speed at which they are developing, this issue could be
significantly more intense - as we may never get up to speed.

5. DEVELOPMENT

5.1 Recent Advances:

One of the prior research papers in software engineering
was by Syer et al. [17] who looked at the source code of
Android and BlackBerry applications along three
measurements, source code, code conditions and code beat.
They find that BlackBerry apps are bigger and depend more
on outsider libraries, though, Android apps have less records
and depend intensely on the Android stage. Hecht et al. [38]
proposed an instrument called Paprika to consider anti-
patterns in mobile apps utilizing their byte code. Khalid et al.
[26] analysed the relationship between notice from Find
Bugs and app appraisals. They find that specific notices
correspond with app evaluations. Cugola et al. [28] built up a

revelatory dialect for a particular sort of mobile app. Around
a similar time, Tillmann et al. created Touch Develop, a stage
to construct mobile apps for the Windows Telephone [36].
This stage was worked to help amateur designers with next
to zero involvement in either software engineering or
software development to assemble apps. Moreover, Acerbis
et al.built the Web Ratio Mobile Platform for display driven
mobile app development [29].

5.2 Future Challenges:

With the popularity of all stages expanding previously barely
any years, designers are enticed to build up the same app for
numerous stages (cross-stage development). All together to
empower this, there are a few structures that are accessible -
Sencha, Phone Gap, and App celerator Titanium to name a
maybe a couple (a portion of the cross-stage development
structures like Cocos2d, Unity 3D, and Corona are
particularly for recreations). The engineer needs to
manufacture the app by just calling the APIs display in these
structures, and at construct time, an app for each stage is
produced by the structure. Be that as it may, all these
systems, because of their plan have an unfavourable effect
on both the execution of the app and its UI. Practically
nothing investigate has been led to enable engineers to get it
the expenses and advantages of the different approaches of
creating cross-stage apps [99]. This issue in this way,
furnishes specialists with a colossal chance to decidedly
influence the designers. Concocting the following best cross-
stage app development approach would be of high effect.

5.3 Security issues:

With the platforms advancing as quick as they are to keep up
with the opposition, it might be exceptionally hard to
assemble a static answer for cross-stage development - the
arrangements must advance similarly as quick. Also, there
are equipment and app advertise approach confuses that
must be dealt with. Indeed, the investigation of the issues in
cross-stage development, might be troublesome on the
grounds that it might be hard to connect the apps over the
app markets. In conclusion, at times, mobile app designers
may muddle their apps, making the investigation of their
development a challenge since one would need to manage
the confusion of the code before having the capacity to think
about the app.

6. TESTING

6.1 Recent Advances:

An extensive variety of studies have created methods to help
mobile app engineers enhance the testing of mobile
applications, specifically by endeavoring to enhance UI and
framework testing scope. Hu et al. propose the Monkey
device, which robotizes the GUI testing of Android apps [32].
Monkey produces arbitrary occasions, instruments the apps
and breaks down follows that are created from the apps to
identify blunders. Another apparatus proposed by Machiry

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3723

et al. [14] is Dynodroid, which is an apparatus that
progressively creates contributions to test Android apps. As
opposed to Monkey, Dynodroid empowers the testing of UI
and framework occasions. Because of this distinction, the
creators demonstrated that Dynodroid can accomplish 52%
higher test scope contrasted with Monkey. Mahmood et al.
[35] introduced the Evo Droid device, which consolidates
program analysis and transformative calculations to test
Android apps. The creators demonstrate that Evo Droid can
outflank Monkey and Dynordoid, accomplishing scope
esteems in the scope of 70-80%. Linares-Vasquez et al. [36]
propose Monkey Lab, which mines recorded executions to
manage the testing of Android mobile apps. While all these
approaches are universally useful test age approaches, Kim
et al. [37] take a gander at execution testing of mobile apps
at the unit test level.

6.2 Future Challenges:

One of the biggest challenges that analysts look in their ebb
and flow line of research on mechanized tests for mobile
apps is that they are not ready to accomplish high code scope
[38]. This is halfway a result of the powerlessness to create a
wide range and assortment of data sources and mostly due
to apps that are intended for client input (like diversion apps
or apps that require a login), which can't be naturally
produced. Frequently the mechanized testing devices can't
continue down a certain execution way because of the
powerlessness to create inputs, and 26 in this way can't test
anything further along that execution way. In this manner
explore in producing a more extensive scope of information
that can emulate a human could greatly affect robotized
mobile app testing instruments. Another test is that
regularly specialists construct apparatuses that will take a
shot at the app parallel since that is the main thing to which
they approach. The accessibility of more OSS apps could
yield in more vigorous instruments. One store of OSS apps is
the F-Droid vault [20]. Be that as it may, from past research
we know that lone a little level of these apps are really
effective apps in the app showcase [37]. An archive of OSS
apps with the relating app pairs made accessible as a
benchmark suite could enormously help analysts in
progressing the best in class in app testing. We might
likewise want to point out that accessibility of effective OSS
apps would propel the best in class in every aspect of
software engineering for mobile apps.

6.3 Security issues:

One of the biggest security issues in seeking after the above
line of research is that researches might not approach all the
different devices as well as stages. Moreover, there is no
simple method to distinguish cross stage apps from the app
stores. Up until now, there has been no push to manufacture
such a database of cross stage apps that researches can
examine.

7. MAINTENANCE

7.1 Recent Advances:

The area of software maintenance is a standout amongst the
most inquired about regions in Software Engineering.
Notwithstanding, due to the way that mobile apps is a
youthful subarea inside SE, the upkeep of mobile
applications stays to be to a great extent unfamiliar. In
addition, since mobile apps are extraordinary, the examines
identified with the upkeep of mobile apps tend to center
around issues that have not been generally examined in past
software support ponders. For instance, generally mobile
apps show ads, and as has been appeared in earlier thinks
about, these promotions require a huge sum of upkeep [7].
So, various earlier investigations explored the support of
mobile apps from various points of view, e.g., code ruse and
promotion related support Mojica-Ruiz et al. [22] analysed
the degree of code reuse in the distinctive classes of Android
applications. They find that approximately 24% of the
classes acquire from a base class in the Android API and 28%
of the classes acquire from a space particular base class.
Besides, they locate that 215 mobile apps are totally reused
by another mobile app. Syer et al. [14] looks at mobile apps
to bigger "customary" software frameworks as far as size
and time to settle deserts. They locate that mobile apps look
like Unix utilities. A different profession inspected Android-
related bug reports. Bhattacharya et al. [9] consider 24
mobile Android apps all together to comprehend the bug-
settling process. They locate that mobile bug reports are of
high calibre, particularly for security related bugs. Martie et
al. [27] broke down points in the Android stage bugs so as to
reveal the most faced off regarding points after some time.
Thus, Liu et al. [9] recognized and portrayed execution bugs
among Android apps.

7.2 Future Challenges:

A portion of the difficulties in support inquire about for
mobile apps is that regularly there is an absence of recorded
information. The software support explore group has
significantly profited from straightforwardly accessible
ancient rarities like source control and bug vaults of OSS
projects. They now have a vast trove of information to assess
their speculations on. Such a help has impelled an expanded
level of research in software support as prove by the
quantity of research productions on it. In any case, generally
there are relatively few OSS mobile apps as talked about in
the past area. The greater part of the current inquire about
depends on the information accessible in the app markets.
Hence, with constrained fine grained confer level data it is
hard to direct support research. Finally, as specified in
Section IX, there are a few organizations that gather
operational information from mobile apps that have been
introduced on a huge number of devices. The majority of
these organizations furnish the app designers with the
information and a few simple analyses on them. There is a
wide assortment of dependability and execution issues that
can be comprehended by building apparatuses and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3724

approaches that mine such operational information (past
work has scarcely touched the most superficial layer of such
an issue by taking a gander at the server side of mobile
applications than the customer side [25])

7.3 Security issues:

From past research we have seen that mobile apps are little,
and have speedy discharge cycles. With such quick
discharge, the reality of the situation may prove that the
support exertion may cover a ton with the advancement
exertion. Thus, it may not be anything but difficult to
distinguish costs relating to upkeep. Furthermore, the
assortment of apps is significantly more than the assortment
of effective work area applications. For instance, a little
formula app like All-the-Cooks [37], and a substantial
application like Microsoft Exceed expectations [38] are
similarly prevalent, yet they may have totally diverse upkeep
endeavors. In this manner the issue of setting the brings
about the correct setting winds up vital. In this manner, it is
much prescribed to monitor the app area when leading
support contextual analyses.

8. CONCLUSION

Finally, we conclude stating - In the present day life,
smartphones are playing a major role in each and every
moment in an individuals’ life and still we have chance to
develop a lot of new integrated applications, fascinating
exploration openings still left to be explored, and a lively
group being worked around it, software engineering
research for mobile apps is an extraordinary place for
youthful developers to start with. It can be concluded as a
great platform for one to choose this development.

REFERENCES

[1] Tse-Hsun Chen, Stephen W. Thomas, Meiyappan
Nagappan, and Ahmed E. Hassan. Explaining software
defects using topic models. In Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories

[2] William Martin, Mark Harman, Yue Jia, Federica Sarro,
and Yuanyuan Zhang. The app sampling problem for app
store mining. In Proceedings of the 12th Working Conference
on Mining Software Repositories.

[3] Claudia Iacob and Rachel Harrison. Retrieving and
analyzing mobile apps feature requests from online reviews.
In Proceedings of the 10th Working Conference on Mining
Software Repositories, San Francisco, CA, USA, May 18-19,
2013, pages 41–44, 2013.

[4] Emitza Guzman and Walid Maalej. How do users like this
feature? A fine grained sentiment analysis of app reviews. In
IEEE 22nd International Requirements Engineering
Conference, Karlskrona, Sweden, August 25- 29, 2014, pages
153–162, 2014.

 [5] Berg Insight. The mobile application market. Online:
http://www.berginsight.com/ReportPDF/ProductSheet/bi-
app1-ps.pdf, Last accessed Oct 2013.

[6] Ingrid Lunden. 6.1b smartphone users globally by 2020,
overtaking basic fixed phone subscriptions. Online:
http://techcrunch.com/2015/06/02/6- 1b-smartphone-
users-globally-by-2020-overtaking-basic-fixed-
phonesubscriptions/, Last accessed Oct 2015.

[7] Stuart McIlroy, Nasir Ali, Hammad Khalid, and Ahmed E.
Hassan. Analyzing and automatically labelling the types of
user issues that are raised in mobile app reviews. Empirical
Software Engineering, page to Appear, 2016.

[8] Mark D. Syer, Bram Adams, Ying Zou, and Ahmed E.
Hassan. Exploring the development of micro-apps: A case
study on the blackberry and Android platforms. In
Proceedings of the 2011 IEEE 11th International Working
Conference on Source Code Analysis and Manipulation

[9] Laura V. Galvis Carreno and Kristina Winbladh. Analysis
of user com- ̃ ments: an approach for software requirements
evolution. In Proceedings of the 2013 International
Conference on Software Engineering

[10] Dennis Pagano and Wiem Maalej. User feedback in the
appstore: An empirical study. In 21st IEEE International
Requirements Engineering Conference, pages 125–134, 2013

[11] Hammad Khalid. On identifying user complaints of ios
apps. In Proceedings of the 2013 International Conference
on Software Engineering.

[12] Mark D. Syer, Bram Adams, Ying Zou, and Ahmed E.
Hassan. Exploring the development of micro-apps: A case
study on the blackberry and 31 Android platforms. In
Proceedings of the 2011 IEEE 11th International Working
Conference on Source Code Analysis and Manipulation.

[13] Hammad Khalid, Emad Shihab, Meiyappan Nagappan,
and Ahmed E. Hassan. What do mobile app users complain
about? a study on free ios apps. IEEE Software, 2014.

[14] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and
Boshen Zhang. AR-Miner: Mining informative reviews for
developers from mobile app marketplace. In Proceedings of
the 36th International Conference on Software Engineering.

 [15] Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed
Barlow, Joshua Charles Campbell, and Stephen Romansky.
GreenMiner: A hardware based mining software repositories
software energy consumption framework. In Proceedings of
the 11th Working Conference on Mining Software
Repositories

[16] Number of apps available in leading app stores as of july
2015. Online:
http://www.statista.com/statistics/276623/number-of-
apps-availablein-leading-app-stores/, Last accessed Oct
2015.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 03 | Mar-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 3725

[17] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang.
Bootstrapping energy debugging on smartphones: A first
look at energy bugs in mobile devices. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks, HotNets-X,
pages 5:1–5:6, 2011.

[18] Ding Li, Shuai Hao, Jiaping Gui, and William G.J. Halfond.
An empirical study of the energy consumption of Android
applications. In Proceedings of the 30th International
Conference on Software Maintenance and Evolution,
September 2014.

[19] Abhijeet Banerjee, Lee Kee Chong, Sudipta
Chattopadhyay, and Abhik Roychoudhury. Detecting energy
bugs and hotspots in mobile apps. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering.

 [20] Geoffrey Hecht, Benomar Omar, Romain Rouvoy,
Naouel Moha, and Laurence Duchien. Tracking the Software
Quality of Android Applications along their Evolution. In
30th IEEE/ACM International Conference on Automated
Software Engineering, Proceedings of the 30th IEEE/ACM
International Conference on Automated Software
Engineering, page 12. IEEE, November 2015.

[21] Hammad Khalid, Meiyappan Nagappan, and Ahmed E.
Hassan. Examining the relationship between findbugs
warnings and end user ratings: A case study on 10,000
Android apps. Software, IEEE, page to appear, 2015.

[22] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason Hong,
and Norman Sadeh. Why people hate your app: Making sense
of user feedback in a mobile app store. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1276–1284, 2013.

[23] Gianpaolo Cugola, Carlo Ghezzi, Leandro Sales Pinto,
and Giordano Tamburrelli. Selfmotion: a declarative
language for adaptive serviceoriented mobile apps. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering,
page 7, 2012

[24] Stuart McIlroy, Nasir Ali, and Ahmed E. Hassan. Fresh
apps: an empirical study of frequently-updated mobile apps
in the google play store. Empirical Software Engineering,
page to Appear, 2016.

[25] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux,
Manuel Fahndrich, and Sebastian Burckhardt. Touchdevelop:
App development on mobile devices. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering.

[26] Aravind Machiry, Rohan Tahiliani, and Mayur Naik.
Dynodroid: An input generation system for Android apps. In
Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 224–234,
2013.

[27] App Annie, howpublished = Online:
https://www.appannie.com/, year = Last accessed Oct 2015,
source = https://www.appannie.com/.

[28] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek.
EvoDroid: Segmented evolutionary testing of Android apps.
In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering.

 [29] Heejin Kim, Byoungju Choi, and W. Eric Wong.
Performance testing of mobile applications at the unit test
level. In IEEE International Conference on Secure Software
Integration and Reliability Improvement.

[30] Mark Harman, Yue Jia, and Yuanyuan Zhang Test. App
store mining and analysis: Msr for app stores. In Proceedings
of the 9th Working Conference on Mining Software
Repositories (MSR ’12), Zurich, Switzerland, 2-3 June 2012

[31] W. Maalej and H. Nabil. Bug report, feature request, or
simply praise? on automatically classifying app reviews. In
23rd IEEE International Requirements Engineering
Conference, pages 116–125, Aug 2015.

[32] F-Droid, howpublished = Online: https://f-droid.org/,
year = Last accessed Oct 2015, source = https://f-droid.org/.

[33] Allthecooks recipies. Online:
https://play.google.com/store/apps/details?
id=com.mufumbo.android.recipe.search&hl=en, October Last
accessed Oct 2015.

[34] Microsoft excel. Online:
https://play.google.com/store/apps/details?
id=com.microsoft.office.excel&hl=en, October Last accessed
Oct 2015

[35] Abram Hindle. Green mining: A methodology of relating
software change to power consumption. In Proceedings of
the 9th IEEE Working Conference on Mining Software
Repositories, pages 78–87, 2012.

[36] Mario Linares-Vasquez, Martin White, Carlos Bernal-C ́
ardenas, Kevin ´ Moran, and Denys Poshyvanyk. Mining
Android app usages for generating actionable GUI-based
execution scenarios. In Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR ’15, pages
111–122, 2015.

[37] Allthecooks recipies. Online:
https://play.google.com/store/apps/details?
id=com.mufumbo.android.recipe.search&hl=en, October Last
accessed Oct 2015.

[38] Microsoft excel. Online:
https://play.google.com/store/apps/details?
id=com.microsoft.office.excel&hl=en, October Last accessed
Oct 2015.

