Abstract— The rapid growth in multimedia services and the enormous offers of video contents in online social networks, users have difficulty in obtaining their interests. Therefore, various personalized recommendation systems have been proposed. In addition, none of them has considered both the privacy of users’ contexts (e.g., social status, ages and hobbies) and video service vendors’ repositories, which are extremely sensitive and of significant commercial value. To handle these problems, it’s been proposed a cloud-assisted differentially private video recommendation system based on distributed online learning. The new optimization technique for recommendation. The video recommendation is based on user’s behavior (user’s interest) and also using the pattern and search recommendation. Search option as sub category search and global search in our application. Facing massive multimedia services and contents in the Internet is based the content provider. In that group of providers we need to find out the irrelevant content promoters. Content promoters are usually trying to promote their contents to social media service or video service sites in internet. In our project Based on the user’s interest we can detect and avoid the irrelevant content and content promoters.

Keywords— location-based social networks (LBSN), points of interest (POI), Recommender systems (RSs), conditional random fields (CRFs), Profile Filtering Agent (PFA).

I. INTRODUCTION

Due to a rapid retrieval purpose, most of multimedia on internet has been tagged according to their contents and events. Users can easily find multimedia clips to query by text searching on websites. However, when browsing on websites for entertainment, the tags may not meet users’ consideration points to request information clips. For most of people, rich emotions of multimedia clips are significant factors associated with mood relaxing and translation. Such an application need understand affective moods of multimedia including music, speech, image and video from websites. Accordingly, an automatic mood analysis can provide a useful clue to find the interested multimedia when users surf websites

Recommender systems (RSS) address the information overload problem by suggesting to users items of their potential interests. Recent advances in recommender systems have shown that information derived from online social networks can be leveraged to improve recommendation accuracy. However, there is still a lack of detailed empirical analysis of how much an RS can benefit from mining user interactions in real-world, general-purpose social networking sites. Meanwhile, videos are increasingly streamed online to users through various platforms, e.g., YouTube. And online videos are hot topics of social interactions among users of OSNs, e.g., Facebook. Therefore, online video is a perfect subject to study how social interaction information can be exploited to improve recommendation accuracy.

The development of such systems is based on the algorithms for video content analysis. These algorithms are built around the models bridging the gap between the syntax of the digital video data stream.

II. RELATED WORK


The rise of social networking, wireless technology, and mobile computing, a new kind of social Web application called location-based social networks (LBSNs) has become increasingly popular. LBSNs such as Foursquare and provide a handy means for mobile users to establish personal social networks, provide reviews, or raise complaints about various points of interest (POIs), such as restaurants, hotels, stores, and cinemas, creating valuable social data for hotspots that are of common interest to the public. POI-based recommendations have attracted lot of research attention from academia and industries, and several different approaches have emerged.

B. Social Interaction Based Video Recommendation: Recommending Youtube Videos To Facebook Users

The attention a video attracts on Facebook is not always well-aligned with its popularity on YouTube. Unpopular videos on YouTube can become popular on Facebook, while popular videos on YouTube often do not attract proportionally high attentions on Facebook. Collected a subset of Facebook users via a random walk based sampling. Then further crawled the users who had video related activities with the sampled users. YouTube videos to Facebook users based on their social interactions. Facebook is not always well-aligned with video popularity on YouTube, and unpopular videos on YouTube can get significant popularity boost on Facebook. To developed a simple top-k
video recommendation algorithm that exploits user social interactions on Facebook to improve the recommendation accuracy for YouTube videos.

C. Hierarchical Affective Content Analysis In Arousal And Valence Dimensions.

Three emotion intensity levels are detected by using fuzzy c-mean clustering on arousal features. Fuzzy clustering provides a mathematical model to represent vagueness, which is close to human perception. Then, valence related features are used to detect five emotion types. Considering is that CRF by HMM and avoids bias problem. Experimental results show that CRF-based hierarchical method outperforms the one-step method on emotion type detection.

D. New Three-Dimensional Model For Emotions And Monoamine Neurotransmitters.

This article presents a new three-dimensional model for monoamine neurotransmitters and emotions. In the model, the monoamine systems are represented as orthogonal axes and the eight basic emotions, labeled according to Tomkins, are placed at each of the eight possible extreme values, represented as corners of a cube. The model may help in understanding human emotions, psychiatric illness and the effects of psychotropic drugs. However, further empirical studies are needed to establish its validity. This article presents a new, explanatory, three-dimensional model for monoamine neurotransmitters and basic emotions. Further empirical studies are needed to establish its validity. In the following, the reasoning and some evidence for the placement of each basic emotion in its particular corner of the model will be presented.

E. Affective Visualization and Retrieval for Music Video.

As an increasingly popular technique, affective video content analysis is designed to be an intelligent solution for the problems caused by the explosively increasing video data. Through combining psychological basis and computer science, affective video content analysis identifies the emotional information in videos by extracting affective features and fusing those features in the established affective models compared with the classic content analysis algorithms, affective content analysis combines. In the academic world, many works have been reported on affective music and movie content analysis. Music video (MV), which combines the features of music and movies, is also an important entertaining media form. An integrated framework for MV affective analysis, visualization, and retrieval is proposed.

III. EXISTING SYSTEM

The speech recognizer is found in some operating systems. Now days, huge number of users using social applications such as face book, YouTube etc. Traditional stand-alone multimedia systems cannot handle the storage and processing of this large-scale datasets. Hence, it is challenging to implement recommendation with the multimedia large data. Users very hard to find out the interested and favorite videos from this large number of collections. User's sensitive context information may be exposed by the recommendation results. Once the recommendation records are accessed by a malicious third party, individual features can be inferred by them merely based on the recommendation outcome. Difficult to reuse video-tag module. Payment for combination of Physical Hosting and Hardware is demanded by the Web Hosting. Lack of scalability in Dedicated Servers. Difficult to identify the content promoter in online. They used the multiple clouds for achieve the Quality of service.

IV. PROPOSED SYSTEM

Here we proposed not only the Quality of service but also increase the quality of the application. We analyzing the user's behavioral information from the each and every user's activity like search videos using sub category and usual search. Here the users classified into sub category based on their interests. At the time of registration they will choose the category of interest. Every users have recommended videos based on their interest. User's if has a chance to recommend unrelated videos can avoid that using unlike option. Here we recommend the videos based on the users search keyword basis.

Recommender systems or recommendation systems (sometimes replacing “system” with a synonym such as platform or engine) are a subclass of information filtering system that seek to predict the ‘rating’ or ‘preference’ that a user would give to an item (such as music, books, or movies) or social element (e.g. people or groups) they had not yet considered, using a model built from the characteristics of an item (content-based approaches) or the user's social environment (collaborative filtering approaches). Recommender systems have become extremely common in recent years. A few examples of such systems.

When viewing a product on Amazon.com, the store will recommend additional items based on a matrix of what other shoppers bought along with the currently selected item. Pandora Radio takes an initial input of a song or musician and plays music with similar characteristics (based on a series of keywords attributed to the inputted artist or piece of music). The stations created by Pandora can be refined through user feedback (emphasizing or deemphasizing certain characteristics).

Netflix offers predictions of movies that a user might like to watch based on the user's previous ratings and
watching habits (as compared to the behavior of other users), also taking into account the characteristics (such as the genre) of the film.

A. System Architecture

Classification algorithms to automatically detect spammers and promoters, and assess their effectiveness in our test collection. Analyzed a variety of video, individual and social attributes that reflect the behavior of our sampled users, aiming at drawing some insights into their relative discriminatory power in distinguishing legitimate users, promoters, and spammers. Fourth, using the same set of attributes, which are based on the user's profile, the user's social behavior in the system, and the videos posted by the user as well as her target (responded) videos, we investigated the feasibility of applying supervised learning.

1) User Interface

This module determines that the user need to make an account by entering his details such as name, e-mail, hobbies, phone number and gender it need to be entered by the particular user before logging into his own account. Thus the details stored in the database will make a authentication while the user makes a login to his account.

2) Private Storage Formation

We make a Private Storage Space for every Provider in our media storage Server. At the time of creating a Provider account the video storage space will be allocated to the provider. That memory of the storage space is not a fixed, it can large-scale storage .From this format we can upload videos confidentially.

The Private Storage Formation (PSF) monitors the target consumer's personal profile. The PSF supports management, scheduling, security, privacy control of the consumer profile, and the required resources. In the proposed system, each intelligent device individually transfers weblog history to the PSF. The Profile Manager (PM) then analyzes the combined weblog, and creates the consumer profile based on this weblog. The proposed PSF can identify the consumer's preference in a short amount of time, and provide a recommended channel list at initial time. Tags can be aggregated in various ways to characterize an entity of User interest.

3) User Recommender System

A content-based recommendations system recommends the most likely matched item, then compares the recommendation list to a user's previous input data or compared to preference items. A content-based recommendations system is based on information searching and generally uses a rating method which is used in the information searching. To measures for computing the user similarity, namely tag cloud-based cosine (TCC) and tag cloud similarity rank (TCSR). The Profile Filtering Agent (PFA) creates a personalized channel profile based on the accumulated viewed content list by using a content based filtering.

Users can recommend the videos to the user itself, at the time of user profile creation. The Recommended videos post to the client profile as video tag system. The video tag is generated based on the user Recommended.

4) Content Filtering and Reusability

A content-based recommendations system recommends the most likely matched item. To compares the recommendation list to a user's previous input data or compared to preference items. A content-based recommendations system is based on information searching and generally uses a rating method which is used in the information searching. The Profile Filtering Agent (PFA) creates a personalized channel profile based on the accumulated viewed content list by using a content based filtering.

On the Internet, content filtering (also known as information filtering) is the use of a program to screen and exclude from access or availability Web pages. Content filtering is used by corporations as part of Internet firewall computers and also by home computer owners, especially by parents to screen the content their children have access to from a computer.

Content filtering usually works by specifying character strings that, if matched, indicate undesirable content that is to be screened out. Content is typically screened for pornographic content and sometimes also for violence- or hate-oriented content. Critics of content filtering programs point out that it is not difficult to unintentionally exclude desirable content.
5) Spammer Detection

Spammers may post an unrelated video as a response to a popular one. We detect the spammers using customer suggestion private storage formation process. Lazy associative classification algorithms to automatically detect spammers. Classifying them as spammers, promoters, and legitimate users. Using our test collection, we provide a characterization of content, individual, and social attributes that help distinguish each user class. We then investigate the feasibility of using supervised

V. ALGORITHM

Recommendation System comprises of various strategies for the recommendation of the particular video to user. The spammer detection also make the recommendation more accurate. The major steps involved in this as follows

SUPPORT VECTOR MACHINE

Classification In the field of multimedia affective analysis, different classifiers such as the Hidden Markov Model, Dynamic Bayesian, Artificial Neural Network and SVM, are frequently used. Among all classifiers, using convex quadratic optimization, the SVM model stands out for achieving a globally optimal solution which exceeds neural network models. At present, SVM has outperformed well weknon classifiers in several branches field of multimedia affective analysis such as speech emotion recognition, emotion extraction from images and music retrieval. When it comes to the training of our SVMs, the training dataset is made up of 4000 clips manually segmented by us from 124 movies. The movies are from various genres, including action, comedy, thriller, romance, etc. Languages are Chinese, English, Spanish, Japanese, and Korean. In the data set, the length of 1588 clips is about 5 seconds; 2291 clips last about 10 seconds, and the rest are of 20 seconds or more in length. We try our best to promise that different emotions could be covered by these clips. All the movie clips are annotated with the intensity of eight emotions divided into 5 grades: 0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, and 0.8-1.0, corresponding to very weak, weak, normal, strong, and very strong respectively. It needs to be mentioned that the annotations can have decimal values. 20 volunteers are recruited to watch the clips and annotate eight values according to their impressions after watching each clip. These ten volunteers are divided into two groups and each annotates half of the total videos. In this work, we do not classify a video clip to one certain emotion class. For each clip, we request our volunteers to annotate eight values, representing the emotional intensities of eight emotion classes respectively.

The average value of the annotations from different volunteers will be regarded as the ground truth. What we should mention in this process is that we use the induced emotion (The induced emotion is the emotion that a viewer feels in response to the movie.) to annotate all clips and the video clip need to be re-annotated if the variance of any emotion annotations is bigger than 0.05.

GRA ALGORITHM

Grey relational analysis is a mathematical statistics method used to find out the numerical relationship between factors in a system and is usually applied to analyze the development trend of systems. So it preserves TFE well by analyzing the fitting degree of emotional curves in a temporal order. Moreover, it makes up for the dependency of the number of data samples and typical probability distributions required in regression analysis and principal component analysis. Due to these characteristics, grey relational analysis has been widely used in trend prediction and system performance evaluation. However, in this paper, we apply this method in video similarity analysis, processing affective features of video and generating the similarity matrix.

VI. EXPERIMENTAL RESULTS

VII. CONCLUSION AND FUTURE ENHANCEMENT

The Proposed System of recommender system started with a brief introduction of the technology and its applications in different sectors. The project part of the Report was based on software development for recommendation. At the later stage we discussed different tools for bringing that idea into practical work in various sectors. After the development of the software finally it was tested and results were discussed, few deficiencies factors were brought in front. After the testing work, advantages of the software were described and suggestions for further enhancement and improvement were discussed.

VIII.REFERENCES


2."Social Interaction Based Video Recommendation: Recommending YouTube Videos to Facebook Users”, Bin Nie*, Honggang Zhang+, Yong Liu†∗ Fordham University, Bronx, NY. Email: {bnie, hzhang44}@fordham.edu NYUPoly, Brooklyn, NY. Email: yongliu@poly.edu,2013.


5. "Affective Visualization and Retrieval for Music Video”, Shiliang Zhang, Qingming Huang, Senior Member, IEEE, Shuqiang Jiang, Member, IEEE, Wen Gao, Fellow, IEEE, and Qi Tian, Senior Member, IEEE, 2011.

6. "Affective Video Content Representation and Modeling”, Alan Hanjalic, Member, IEEE, and Li-Qun Xu, Member, IEEE, 2010.


8. "Hierarchical affective content analysis in arousal and valence dimensions”, Min Xu a,b,n , Changsheng Xu b , Xiangjian He a,n , Jesse S. Jin c , Suhuai Luo c , Yong Rui d, 2002.

