Volume: 05 Issue: 12 | Dec 2018

Performance Evaluation of Stand-alone and On Grid Photovoltaic System using PVSYST Software.

Asia'u Talatu Belgore¹, Prof. Ranjit Rajak², Prof. Priyanka Patel³

¹Student, C.G.P.I.T, Uka Tarsadia University, Bardoli, Surat, India ²Assistant Professor, C.G.P.I.T, Uka Tarsadia University, Bardoli, Surat, India ³Assistant Professor, C.G.P.I.T, Uka Tarsadia University, Bardoli, Surat, India ***

Abstract - There are a number of factors behind the development of a nation, electricity is one of them. Nowadays, the main challenge for both developed and developing countries is to generate electricity continuously to meet the demand which is increasing tremendously day by day. This paper simulates the feasibility of installing a stand-alone and Grid connected system in the Nursing college building and Feeder 2 connected loads of Uka Tarsadia University respectively. The technical performance of a 21.12 kW standalone system of performance ratio 56.99% based on load analysis is evaluated. Feeder 2 with total load demand of 1074 kW, a technical performance of a 1121 kW grid connected system of performance ratio 78.53% is evaluated. The overall performance of PV systems are always characterized by various parameters such as geographical location, panel orientation, mounting structure, climatic conditions, PV module, system characteristics etc. Performance ratio and Solar fraction are index which represents the level of utilization of the system. The simulations are carried out using PVsyst, a software package for the analysis and simulation of a complete PV systems.

Electricity, Stand-alone System, Grid-Kev Words: connected System, Photovoltaic (PV), Meteor data, **PVsyst Software.**

1. INTRODUCTION

The sun provides the energy to sustain life in our solar system. In one hour, the earth receives enough energy from the sun to meet its energy needs for nearly a year. Photovoltaic is the direct conversion of sunlight to electricity. It is an attractive alternative to conventional sources of electricity for many reasons; it is safe, silent, and non-polluting, renewable, highly modular in that their capacity can be increased incrementally to match with gradual load growth, and reliable with minimal failure rates and projected service lifetimes of 20 to 30 years [1]. It requires no special training to operate, it contains no moving parts, it is extremely reliable and virtually maintenance free, and it can be installed almost anywhere.

Electricity production using renewable energy resources (RES) reduces environmental impacts and produces least amount of secondary wastes. A photovoltaic (PV) system consists of a PV array, battery and elements for power

conditioning. The PV system converts solar energy into dc power. If ac loads are used, the system requires inverter to convert dc into ac. There are two types of PV system; the grid connected and standalone [5]. Grid connected photovoltaic systems feed electricity directly to the electrical network, operating parallel to the conventional energy source. Gridconnected systems generate clean electricity near the point of use, without the transmission and distribution losses or the need for the batteries. A stand-alone system involves no interaction with a utility grid, hence the generated power supplies only the designed load. In case the PV array does not directly supply a load, a storage device is needed [2,5]. mostly which is a battery. The battery bank stores energy when the power supplied by the PV modules exceeds load demand and releases it backs when the PV supply is insufficient. This stand-alone PV power generation will be used in the home or building for the electrification purpose [2, 4]. Wide variety of tools exist for the analysis and dimensioning of both Grid connected and stand-alone photovoltaic systems. PVsyst is a dedicated PC software package for PV systems. The software was developed by the University of Geneva. It integrates pre-feasibility, sizing and simulation support for PV systems. After defining the location and loads, the user selects the different components from a product database and the software automatically calculates the size of the system. The solar data at 0.5° latitude and longitude resolution are available in PVsyst Software [4,7]. For this study, the simulations are performed by using PVsyst 6.7.5. The graphs and tables that will depict in the later portion of the paper had been generated while doing the simulation.

1.1 Geographical Location

The geographical location of the site is Tarsadia, latitude of 21.07°N, and longitude of 73.13°E. The meteorological data is acquired from Meteor 7.2, a comprehensive climatological database for solar energy applications, with annual solar radiation of 5.5 – 6.6 kWh/m²/day at altitude of 32m above sea level. The tilt angle for PV array is kept as equal to the latitude of the corresponding location to get maximum solar irradiation [3, 6]. So that the optimum tilt angle is kept as 21°

2. STAND-ALONE SYSTEM

The size of stand-alone PV system will depend on the demand of the user, and the system designer needs to input the desired nominal power, or alternatively the available area for installing PV modules. The inverter module needs to be chosen from the inverter database. All the strings of the PV modules connected should be homogeneous; identical modules, same number of modules in series, same orientation etc. The figure below shows the schematic diagram of a stand-alone system. The diode shown here is the bypass diode used for the protection purpose [7].

Fig -1: Figure 1: Schematics of the System

3. DETERMINATION OF THE LOAD

Table -1: Load Consumption of Nursing College

Load	No	Watta	Unit	Hrs. of	Unit
		ge	consum	use	consumptio
			ption		n per day
					(kWh)
Tube	80	36	2880	6	17.28
light					
Fan	140	60	8400	6	50.4
PC's	03	300	900	4	3.6
		1			
AC	01	1750	1750	4	7.0
Develo	00	200	2700	2	0.1
Proje	09	300	2700	3	8.1
ctor					

Table I above shows the load consumption in the Nursing college of UTU. Total energy demand per day is 86380 Wh. It

is seen that the quantity of fan in the college is much as compared to other loads.

4. SYSTEM PARAMETERS

The following are details of the standalone system.

Table -2: S	ystem Pa	arameters
-------------	----------	-----------

Module type	Standard
Technology	Poly-crystalline
No of modules	192
Unit power	110 Wp
Battery Model	Generic, Lead-acid, 12 v, 160 Ah
Number of units	180
Universal controller with MPPT	1
Back up Genset	3 kW

Table II depicts the system parameters. 192 modules of poly 110 W_p 72 cells is required.

Table -3: Operating Conditions

V _{mpp}	369 V
Impp	51 A
Plane irradiance	1000 W/m ²
Maximum operating power	18.79 kWp
Array nominal power	21.12 kW _p
Nominal capacity of battery	240 V, 1440 Ah

Table 3 represents the operating conditions of the standalone PV system. The chosen cell has maximum operating power of 18.79 kW_{p} .

5. PERFORMANCE ANALYSIS OF THE STAND-ALONE SYSTEM

This study is totally based on the PVsyst software. The software is used for modeling purpose. All the figures and tables shown in the paper are generated during the simulation process for Tarsadi site only.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 12 | Dec 2018

www.irjet.net

	GlobHor	DiffHor	T Amb	WindVel	GlobInc	DifSInc	Alb Inc	DifS/GI
	k₩h/m²	kWh/m²	°C	m/s	k₩h/m²	kWh/m²	k₩h/m²	
January	156.5	31.71	22.09	0.8	203.2	38.24	1.037	0.000
February	165.9	33.16	23.78	0.8	199.1	38.27	1.101	0.000
March	204.2	54.17	27.50	0.8	223.6	58.87	1.355	0.000
April	213.1	65.06	29.54	1.1	213.7	66.49	1.415	0.000
May	220.9	81.72	30.50	2.0	206.5	79.51	1.466	0.000
June	167.0	92.99	29.44	1.9	153.2	87.91	1.107	0.000
July	130.3	87.94	28.37	1.8	121.9	83.45	0.865	0.000
August	123.9	90.61	27.64	1.5	119.4	87.30	0.822	0.000
September	144.6	78.39	27.97	0.8	149.2	78.99	0.959	0.000
October	177.8	57.91	28.01	0.5	205.3	64.56	1.180	0.000
November	155.5	35.65	25.35	0.5	196.1	41.91	1.033	0.000
December	145.0	34.58	23.11	0.6	190.1	41.27	0.963	0.000
Year	2004.7	743.90	26.95	1.1	2181.4	766.75	13.304	0.000

Table 4 represents the meteorological and incident energy of the PV system. The global horizontal irradiation (GlobHor) is 2004.7 kWh/m²/year. The horizontal diffuse irradiation (DiffHor) is 743.90 kWh/m². The overall global incident energy on the collector plane is 2181.4 kWh/m².

Table -5: Normalized Performance Coefficients

	Yr	Lu	Yu	Lc	Ya	Ls	Yf	PR
	kWh/m².day		kWh/kWp/d		kWh/kWp/d		kWh/kWp/d	
January	6.56	1.108	6.56	2.395	4.16	0.596	3.56	0.544
February	7.11	1.583	7.11	3.099	4.01	0.502	3.51	0.493
March	7.21	1.567	7.21	3.198	4.02	0.452	3.56	0.494
April	7.12	1.635	7.12	3.260	3.86	0.453	3.41	0.479
May	6.66	1.105	6.66	2.551	4.11	0.545	3.56	0.535
June	5.11	0.181	5.11	1.173	3.94	0.388	3.55	0.695
July	3.93	0.080	3.93	0.791	3.14	0.114	3.03	0.770
August	3.85	0.000	3.85	0.673	3.18	0.259	2.92	0.758
September	4.97	0.000	4.97	0.966	4.01	0.773	3.23	0.650
October	6.62	1.164	6.62	2.598	4.03	0.461	3.56	0.538
November	6.54	1.095	6.54	2.463	4.07	0.527	3.55	0.543
December	6.13	1.151	6.13	2.362	3.77	0.337	3.43	0.560
Year	5.98	0.885	5.98	2.121	3.86	0.449	3.41	0.570

Performance ratio (PR) is the ratio of the final PV system yield (Y_f) and the reference yield (Y_r) [4]. Table V shows the yearly average performance ratio of the site is 0.57.

Table -6: Losses in the System

	ModQual	MisLoss	OhmLoss	EArrMPP	EArUfix	EUnused	EArray
	k₩h	k₩h	kWh	kWh	k₩h	kWh	k₩h
January	53.93	38.95	52.77	3450	3450	726	2724
February	51.78	37.40	55.16	3308	3308	936	2371
March	57.22	41.33	60.24	3656	3656	1026	2630
April	54.50	39.36	55.44	3484	3484	1036	2448
May	53.33	38.52	49.21	3414	3414	724	2691
June	40.63	29.35	30.60	2608	2608	115	2493
July	32.80	23.69	21.38	2109	2109	52	2056
August	32.36	23.37	20.11	2081	2081	0	2081
September	39.57	28.58	31.57	2538	2538	0	2538
October	53.11	38.37	51.82	3398	3398	762	2636
November	51.22	37.00	51.13	3275	3275	694	2581
December	50.35	36.37	48.65	3222	3222	754	2468
Year	570.80	412.31	528.08	36542	36543	6824	29718

Table 6 represents the detailed monthly average system losses in kWh. Module quality loss (Mod Qual) is 570.80 kWh/year. Module mismatch loss (Mis Loss) is 412.31 kWh/year. Ohmic wiring loss (Ohm Loss) is 528.08 kWh/ year. Array virtual energy at maximum power point (EArrMPP) is 36542 kWh/Year. Array virtual energy at fixed voltage (EArUfix) is 36543 kWh/year, unused energy is 6824 kWh/year and the effective energy at the output of the array (EArray) is 29718 kWh/year.

Table -7. Dalances and Main Resul

	GlobHor	GlobEff	E Avail	EUnused	E User	E Load	SolFrac
	k₩h/m²	kWh/m²	kWh	kWh	k₩h	kWh	
January	156.5	198.2	3258	726	2334	2333	1.000
February	165.9	194.8	3140	936	2075	2074	1.000
March	204.2	218.2	3469	1026	2334	2333	1.000
April	213.1	207.9	3311	1036	2161	2160	1.000
May	220.9	200.2	3226	724	2334	2333	1.000
June	167.0	147.9	2434	115	2248	2247	1.001
July	130.3	117.3	1964	52	2248	2247	0.882
August	123.9	114.9	1936	0	2335	2333	0.820
September	144.6	144.2	2360	0	2161	2160	0.948
October	177.8	200.0	3213	762	2334	2333	1.000
November	155.5	191.7	3094	694	2247	2247	1.000
December	145.0	185.8	3047	754	2247	2247	1.000
Year	2004.7	2121.2	34451	6824	27058	27044	0.971

Table 7 represents the balances and main results of the system. Yearly global horizontal irradiation is 2004.7 kWh/m². The yearly global incident energy on the collector plane is 2121.2 kWh/m². Energy available at the output of the PV array is 34451 kWh. The yearly unused energy is 6824 kWh. Yearly energy supplied to the user is 27044 kWh, yearly energy need of the user (load) is 27044 kWh. The solar fraction of the system (E_{Used}/E_{Load}) is 0.971.

Figure -2: Performance Ratio and Solar Fraction

L

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056 p-ISSN: 2395-0072

IRJET Volume: 05 Issue: 12 | Dec 2018

www.irjet.net

The performance ratio, which indicates the ratio between actual yield (output of inverter) and target yield (output of PV array), in the simulation was found to be 56.99%. the solar fraction which is the ratio of energy supplied to energy required is 97%. These index represent the level of utilization of the system.

Figure -3: System Loss Diagram

The detailed annual loss diagram is shown in figure 3. It is observed that about 19% of the losses is accounted for as module losses, 7% as converter losses, 5.3% as battery losses. Also, direct use of battery storage is 62.7% while stored energy accounts for 37.3%. It is obviously seen that the highest lost number occur on the Unused energy and PV loss due to temperature which are 18.7% and 14.8% respectively.

6. TOTAL CONNECTED LOAD OF FEEDER 2

Table -8: Load Consumption

Loads	Numbers	Watt	Total
			Consumption (W)
Fan	2626	60	157560
Tube light	2172	36	78192
Projectors	98	300	29400
Air Conditioner	171	1750	296685
PC's	837	300	251100

Extra		260889
Total		1073826

Table 8 above shows the load connected to a feeder in UTU. In this feeder, the C.G.Patel Institute. of Technology, Raman Bhakta School of Architecture, Shrimad Rajchandra Collage of Physiotherapy, B.V.Patel Institute of Management, Computer and Information Technology, Chemistry Department, Shrimad Rajchandra School of Sports, Boys Hostel and Girl's Hostel are the connected buildings. Total connected load is 1073.826 kW.

7. GRID CONNECTED SYSTEM PARAMETERS

The following are details for simulation of the grid connected system.

Table -9:	System	Parameters
rabic 7.	System	1 al allieter 5

Module type	Generic			
Technology	Mono-crystalline			
No of modules	4485			
Unit power	250 Wp			
Inverter	Solar gate PV9M380NN			
Inverter unit power	315 kW			
Number of inverters	3			

Table -10: Operating Conditions

V _{mpp}	623 V				
I _{mpp}	1595 A				
Plane irradiance	1000 W/m ²				
Maximum operating power	994 kWp				
Array nominal power	1121 kWp				
Load Profile	Grid				

Table 10 represents the operating conditions for the simulated system. The array nominal power is 1121 kW_{p} .

International Research Journal of Engineering and Technology (IRJET)

Volume: 05 Issue: 12 | Dec 2018

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

8. PERFORMANCE ANALYSIS

IRIET

 Table -11: Normalized Performance Coefficients

	Yr	Lc	Ya	Ls	Yf	Lcr	Lsr	PR
	kWh/m².day		kWh/kWp/d		kWh/kWp/d			
January	6.56	1.164	5.39	0.159	5.23	0.177	0.024	0.798
February	7.11	1.387	5.72	0.176	5.55	0.195	0.025	0.780
March	7.21	1.507	5.71	0.176	5.53	0.209	0.024	0.767
April	7.12	1.505	5.62	0.180	5.44	0.211	0.025	0.763
May	6.66	1.330	5.33	0.175	5.16	0.200	0.026	0.774
June	5.11	0.897	4.21	0.141	4.07	0.176	0.028	0.797
July	3.93	0.634	3.30	0.119	3.18	0.161	0.030	0.808
August	3.85	0.598	3.25	0.112	3.14	0.155	0.029	0.816
September	4.97	0.874	4.10	0.130	3.97	0.176	0.026	0.798
October	6.62	1.319	5.30	0.158	5.15	0.199	0.024	0.777
November	6.54	1.251	5.29	0.168	5.12	0.191	0.026	0.783
December	6.13	1.097	5.03	0.165	4.87	0.179	0.027	0.794
Year	5.98	1.128	4.85	0.155	4.69	0.189	0.026	0.785

Performance ratio (PR) is the ratio of the final PV system yield (Y_f) and the reference yield (Y_r) [4]. Table XI shows the yearly average performance ratio of the site is 0.785.

	ModQual	MisLoss	OhmLoss	EArrMPP	InvLoss	
	k₩h	kWh	k₩h	kWh	k₩h	
January	-1429.477	2112	2504	187410	5513	
February	-1372.136	2028	2646	179650	5534	
March	-1514.973	2239	2881	198392	6123	
April	-1442.428	2131	2636	188998	6062	
May	-1412.037	2087	2308	185289	6091	
June	-1076.643	1591	1389	141649	4754	
July	-869.654	1285	943	114595	4128	
August	-858.064	1268	878	113120	3908	
September	-1048.475	1549	1450	137846	4357	
October	-1406.275	2078	2451	184380	5505	
November	-1356.726	2005	2429	177819	5640	
December	-1334.477	1972	2304	174989	5722	
Year	-15121.364	22344	24820	1984139	63339	

Table -12: Losses in the System

Table 12 represents the detailed monthly average system losses in kWh. Module mismatch loss (Mis Loss) is 22344 kWh/year. Ohmic wiring loss (Ohm Loss) is 24820 kWh/ year. Array virtual energy at maximum power point (EArrMPP) is 19841.39 kWh/Year. Total Inverter loss is 63339 kWh/year.

	GlobHor	DiffHor	T Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	k₩h/m²	kWh	k₩h	
January	156.5	31.71	22.09	203.2	198.2	187410	181896	0.798
February	165.9	33.16	23.78	199.1	194.8	179650	174116	0.780
March	204.2	54.17	27.50	223.6	218.2	198392	192269	0.767
April	213.1	65.06	29.54	213.7	207.9	188997	182936	0.763
May	220.9	81.72	30.50	206.5	200.2	185289	179198	0.774
June	167.0	92.99	29.44	153.2	147.9	141649	136895	0.797
July	130.3	87.94	28.37	121.9	117.3	114595	110467	0.808
August	123.9	90.61	27.64	119.4	114.9	113120	109212	0.816
September	144.6	78.39	27.97	149.2	144.2	137846	133489	0.798
October	177.8	57.91	28.01	205.3	200.0	184380	178875	0.777
November	155.5	35.65	25.35	196.1	191.7	177819	172180	0.783
December	145.0	34.58	23.11	190.1	185.8	174989	169267	0.794
Year	2004.7	743.90	26.95	2181.4	2121.2	1984137	1920800	0.785

Table -13: Balances and Main Result

Table 13 depicts the balances and main results of grid connected PV system. Yearly global horizontal irradiation is 2004.7 kWh/m². The yearly global incident energy on the collector plane is 2181.4 kWh/m². Energy available at the output of the PV array is 1984137 kWh. The energy injected into the grid is 1920800 kWh. The average ambient temperature is 26.95°C. Performance ratio of the system is 78.5%.

Figure -4: Performance Ratio

Fig.4 shows the performance ratio, which indicates the ratio between actual yield (output of inverter) and target yield (output of PV array), of the incident energy for the entire month of the year to be 78.5%. This index represent the level of utilization of the system.

L

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 05 Issue: 12 | Dec 2018

p-ISSN: 2395-0072

Figure 5: System Loss Diagram

The system detailed annual loss diagram is shown in fig 5. The horizontal global irradiation is 2005 kWh/m², the effective irradiation on collector plane is 2121 kWh/m². After PV conversion, array nominal energy is 2377 MWh and efficiency at Standard Test Condition (STC) is 15.36%. Array virtual energy obtained is 1984 MWh. After the inverter loss, the available energy at output of inverter is 1921 MWh. It is obviously seen that the highest loss occur on the PV due to temperature which is 14.9%.

9. CONCLUSIONS

This paper evaluates the feasibility and performance of both stand-alone and grid connected systems in UTU efficiently using PVsyst software. The result of the simulation indicates the highest level of solar radiation in Tarsadia occurs from March to May, with value ranging from 213.1 to 220.9 kWh/m² of global horizontal irradiance. The periods of high level radiation very much depends on the weather condition which is relatively difficult to predict.

It is observed that by installing a 21.12 kW stand-alone system in the Nursing college of UTU, for a load of daily demand of 86.4 kWh, the system produces available energy of 34.45 MW annually with a specific production of 1631 kWh/kWp/yr. The annual used energy is 27.06 MWh, unused of 6.82 MWh with system performance ratio of 56.99%.

Likewise, by installing a 1121 kW Grid connected system in the campus for a total load demand of 1074 kW, the system produces annual energy of 1921 MWh, with a specific

production of 1714 kWh/kWp/yr. and system performance ratio of 78.53%. The result shows that about 21.5% of solar energy falling in the analyzed period is not converted in to usable energy due to factors such as losses in conduction, contact losses, thermal losses, the module and inverter efficiency factor, defects in components, etc.

The main uncertainties of the PV production remain: the meteor data (source, and annual variability), the PV module model, and the validity of the manufacturer's specifications as the simulation was based on these data.

REFERENCES

- [1] Chetan Singh Solanki, "Solar Photovoltaics: Fundamentals, Technologies and Application", Third edition, pp 375 - 440.M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.
- Rekhashree, Dr. J.S Rajashekar, Dr.H.Naganagouda, [2] "Study on Design and Performance Analysis of Solar PV Rooftop Stand alone and On Grid System Using PVSYST", International Research Journal of Engineering and Technology (IRJET), Volume: 05 Issue: 07 | July 2018.
- [3] Ashok Kumar, N.S. Thakur, Rahul Makade, Maneesh Kumar Shivhare, "Optimization of Tilt angle for Photovoltaic Array", International Journal of Engineering Science and Technology (IJEST), Vol. 3, No.4, 2011, pp. 3153-3161.
- [4] C.P. Kandasamy, P. Prabu, K. Niruba, "Solar Potential Assessment Using PVSYST Software" 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE).
- [5] Jaydeep. V. Ramoliya, "Performance Evaluation of Gridconnected Solar Photovoltaic plant using PVSYST Software", Journal of emerging Technologies and Innovative Research (JETIR), February 2015, Volume 2, Issue 2.
- [6] S. Labed, E. Lorenzo, "The Impact of Solar Radiation Variability and Data Discrepencies on the Design of PV Systems". Renewable Energy 29, 2004, pp.1007-1022.
- [7] www.pvsyst.com.