
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1457

Implementation of FPGA Based Image Processing Algorithm Using

Xilinx System Generator

Deepesh Prakash Guragain1, Pramod Ghimire2, Kapil Budhathoki3

1,2Asst.Professor,Dept of Electronics and Communication Engineering, Nepal Engineering College, Bhaktapur Nepal
3E-Matrix Pvt. Ltd, Kathmandu, Nepal

---***---
Abstract – This paper provides the method of image
processing using Xilinx System Generator. Xilinx System
Generator has necessary libraries to assist various types of
algorithms. It is integrated with Matlab Simulink environment
in this work. Model based design approach is used to
implement various kinds of image processing algorithms.
Hardware co-simulation is done to verify the results. The
different image processing algorithms for RGB to gray scale,
algorithm for image negatives, image enhancement,
background subtraction, thresholding, erosion, dilation and
masking are implemented using available System Generator
blocks.

Key Words: Image Processing, Xilinx System Generator,
Field Programmable Gate Array (FPGA), DSP, Matlab

1. Introduction

Image processing has wide applications from medical image
processing to computer vision, digital photography, satellite
imaging, digital encryption and decryption. The quality of
image is considerably increased by image processing
algorithms, which helps lot in medical imaging, surveillance
and robotics application for target identification and
tracking [1].

The need to process the image in real time is time consuming
and leads to the only method of implementing the algorithm
at hardware level. With FPGA implementations, the logic
required by an application is implemented by building
separate hardware for each function. Also FPGAs are
inherently parallel; this gives the speed to those real time
applications while retaining the programmable flexibility of
software at a relatively low cost. This paper aims to
implement image processing algorithms using Xilinx System
Generator. The hardware implementation of the algorithms
on FPGAs is done using model based design approach.

1.1 Xilinx System Generator

The Xilinx’s Generator is a System-level modeling tool from
Xilinx that facilitates FPGA hardware design. It extends
Simulink in many ways to provide a modeling environment
well suited for hardware design. The software automatically
converts the high level System DSP block diagram to RTL. The
result can be synthesized to Xilinx’s FPGA technology using
ISE tools, all of the downstream FPGA implementation steps

including synthesis place and route are automatically
performed to generate an FPGA programming file. System
Generator automates the design process, debugs, implement
and verifies the Xilinx-based FPGAs. It provides a high speed
HDL co-simulation interfaces which give up to a 1000x
simulation performance increase. System Generator also
supports a black box block that allows RTL to be imported
into Simulink and co-simulated with either Modelsim or
Xilinx ISE simulator [2].

1.2 Design flow for image processing using Xilinx
System Generator

The algorithms are developed and models are built using
library provided by Xilinx Blockset. These models are
simulated in Matlab/Simulink environment. The reflected
result is viewed on a video viewer. The results obtained from
System Generator are configured for suitable FPGA
implementation. The behavioral model is verified,
synthesized and implemented on FPGA. The Xilinx System
Generator itself has the feature of generating user
constraints file (.ucf), test bench and test vectors for testing
architecture.

Fig -1: Design flow for FPGA based implementation of
image processing algorithms.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1458

2. Interfacing with System Generator Design

The Simulink environment uses a “double” to represent
number in a simulation. A double is a 64 bit 2’s complement
floating point number. Since this number system consumes
lot of resources and is not efficient for FPGAs. The Xilinx
blocksets uses n-bit fixed point numbers, thus a conversion is
required when Xilinx blocks communicate with Simulink
blocks [2].Gateway In, Gateway Out, and Sampling are used
during this conversion.

3. Methodology of implementation of image
processing in hardware

All required hardware algorithms are implemented in
between image pre-processing and image post-processing as
depicted in Fig-2. Image source, image viewer, Image Pre-
Processing and Image Post-Processing units are common for
the entire image processing applications and they are
implemented in Simulink.

Fig -2: Design flow of hardware implementation of image
processing

4. Image Pre-Processing Unit

Image pre-processing in Matlab helps in providing input to
FPGA as specific test vector array which is suitable for FPGA
bit stream compilation using System Generator [3].

Fig -3: Image Pre-Processing Unit

The Image Pre-Processing unit block is shown in Fig-3.
Resize, Convert 2-D to 1-D, Frame conversion and unbuffer
are implemented in this unit. The conversion from 2-D to 1-D
data is needed as FPGAs operate in one dimensional data
only.

 5. Image Post-Processing Unit

Image post-processing helps in recreating image from 1-D
array. It consists of four blocks: Data Type Conversion, Buffer,
Convert 1-D to 2-D, and video viewer. The first block converts
image signal to unsigned integer format. Second block
converts scalar samples to frame output at lower sampling
rate. Third block converts 1-D image signal to 2-D image
matrix. The last block is used to display the output image
back on the monitor. Fig-4 depicts the Image Post-processing
steps in block diagram form.

Fig -4: Image Post-Processing Unit

5.1: Algorithm for gray scale conversion

To minimize the processing time, color images are converted
into grayscale level according to the color of each pixel that
contains red(R), green (G), and blue (B) [4],[5]. The RGB
image is converted to a grayscale image according to the
following equation.

 Y=0.3*R + 0.59*G + 0.11*B

Fig-5 shows the algorithm in block diagram form.

Fig -5: Algorithm for Gray scale conversion

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1459

Fig -6: Result obtained from Grayscale Image Conversion.

5.2 Algorithm for gray scale image negative

Negative image is obtained by simply inverting the image
matrix. Such produced image looks like the negative of the
film. In Matlab, this is obtained by inverting the image source
with NOT gate or by using Addsub block, subtracting one
input by constant 255. Both the Addsub and NOT gate is
available in Xilinx System Generator library which make steps
simpler to use. The algorithm used is shown in Fig-8.

Fig -7: Algorithm for Image Negative using Addsub Block

for Gray scale Image

Fig -8: Algorithm for Image Negative using Inverter Block
for Grayscale Image

Fig -9: Result obtained from Grayscale Negative

5.3 Algorithm for image enhancement

Image enhancement improves the interpretability or
perception of information in images for human viewers
[6],[7],[8]. Fig-11 shows the result obtained.

 Fig -10: Algorithm for Grayscale Color Enhancement

 Fig -11: Result for Grayscale Image Enhancement

5.4 Algorithm for Image contrast stretching

Grayscale image is stretched according to the equation.

New_ pixel =3(old pixel-127) +112
where, New_pixel is its result after the transformation.

Fig -12: Algorithm for Grayscale Image Enhancement

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1460

Fig -13: Result obtained from Grayscale Contrast
stretching

5.5 Algorithm for Image Thresholding

Thresholding an image is the method of replacing each pixel
in an image with a black pixel in the image intensity if it is
less than some fixed constant value or white pixel if the
image intensity is greater than that constant [9],[10]. Fig-14
shows the basic block diagram of thresholding while Fig-15
depicts the result that we implemented in the FPGA.

Fig -14: Algorithm for Grayscale image thresholding

Fig -15: Result of Grayscale Image thresholding

5.6 Background subtraction

We use simple Addsub block to get the image of interest as
shown in Fig-16 with the result that we obtained in Fig-17.

Fig -16: Algorithm for Grayscale Image background
subtraction

Fig -17: Result obtained from background subtraction

5.7 Erosion

In erosion, an object pixel is kept only if the structuring
elements fit completely within the object; the output is
considered as object pixel only if all of the inputs are one
thus erosion is logical AND of the pixel within the window.
The object size reduces because of erosion. Fig-18 and Fig-19
shows the block diagram form of the implementation of the
erosion and the hardware implementation result.

Fig -18: Algorithm for binary image erosion.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1461

Fig -19: Result obtained from erosion

5.7 Dilation

With dilation, each pixel is replaced by the shape of the
structure element within the output image. Fig-20 and Fig-
21 indicates the block diagram of the dilation operation and
the output that we obtained from the hardware
implementation.

Fig -20: Algorithm for dilation

Fig -21: Result obtained from Dilation algorithm

5.8 Algorithm for Edge detection

Edge detection is filtering and masking operation with
suitable filter mask. Xilinx 5×5 filter provides coefficient for
an Edge, Sobel X, Sobel Y, Sobel X-Y, Blur, Smooth, Sharpen,
Gaussian filtering. For Filtering operation, the delay is
created by 5×5 filter block to avoid this error since the
System Generator has to be clocked 5 times faster than the
normal clock. Fig-22 and Fig-23 demonstrates the block
diagram and the FPGA output results.

Fig -22: Algorithm for Edge detection for Grayscale Image.

Fig -24: Masking with setting of the background to black
or white.

Fig -23: Result obtained from Edge detection

5.9 Masking

Masking is commonly used to select a region of an image to
process, while ignoring irrelevant region within the image.
The choice to use AND or OR depends on the desired level
for background. ANDing with zero will result in black
background, while ORing with one will make white
background. Fig-24 shows algorithm for masking while Fig-
25 shows its output.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072

© 2018, IRJET | Impact Factor value: 6.171 | ISO 9001:2008 Certified Journal | Page 1462

Fig -25: Result obtained from Masking Algorithm.

6. Hardware/Software Co-Simulation in System
Generator

System generator provides hardware co-simulation making
it possible to incorporate a design running on an FPGA
directly into Simulink simulation. When the system design is
simulated in Simulink, result for the compiled portion are
calculated in actual FPGA hardware, often resulting in
significantly faster simulation time while verifying the
functional correctness of the hardware.

7. Conclusions

Xilinx System Generator is integrated with Matlab Simulink
for the real time image processing algorithms. Hardware co-
simulation is used during the FPGA verification.

REFERENCES

[1] R.G.R. Woods, “Digital Image Processing”, New Jersey;

Prentice-Hall, 2008

[2] “DSP System Generator User Guide” 12.1, 2012

[3] N.P.A.A.Gokhale, “FPGA Implementation for Image
Processing Algorithms Using Xilinx System Generator”,
IOSR Journal of VLSI and Signal Processing,
vol.2(4),pp.26-36

[4] S. R. A. S. J.C.Moctezuma, "Architecture for filtering
images using Xilinx System Generator," World Scientific
Advanced Series In Electrical And Computer
Engineering, Proceeding of the 2nd WSEAS International
Conference on Computer Engineering and Applications,
pp. 284-289, 2008.

[5] M. Ownby and M. W.H, "A Design Methodology for
Implementing DSP with Xilinx System Generator for
Matlab," IEEE International Symposium on System
Theory., pp. 404-408, 2003.

[6] R. S. P. J. P. R. NARESH, "Authentic Time Hardware Co-
simulation of Edge Discovery for Video Processing
System," International Journal of Research in Modern
Engineering and Emerging Technology , vol. 1, no. 7, pp.
40-47, August 2013.

[7] S. S. D. Praveen Vanaparthy, "FPGA Implementation of
Image Enhancement Algorithms for Biomedical Image
Processing," International Journal of Advanced Research
in Electrical, Electronics and Instrumentation
Engineering , vol. 2, no. 11, pp. 5747 - 5753, November
2013.

[8] T. S. F. S. a. M. A. Yahia Said, "Real Time Hardware Co-
simulation of Edge Detection for Video Processing
System," Laboratory of Electronics and Microelectronics
(EμE) IEEE, pp. 852-855, 2012.

[9] E. Kuhn, "Grayscale Conversion of a Color Image Using
Simulink and Xilinx Blocks," 2010.

[10] A. R. S. Ravi.S, "FPGA Based Design and Implementation
of Image Edge Detection Using Xilinx System Generator,"
International Journal of Engineering Trends and
Technology (IJETT), vol. 4, no. 10, pp. 4657-4660, Oct
2013.

