LATERAL STABILITY OF HIGH RISE STEEL BUILDINGS USING E TABS

TEJESH R, UMMMER FAROOQ PASHA

1PG student Dept. of Civil Engineering, Ghausia College of Engineering, Karnataka, India
2Associate Prof Dept. of Civil Engineering, Ghausia College of Engineering, Karnataka, India

Abstract - The present trend in construction industries is to build tall building i.e. vertical expansion due to scarcity of land available and increasing population. There are many areas of study in tall buildings such as p-delta effect, bracing axial contraction of columns, deep foundations etc. The cast of the building will increase as the height of the building increase due to increased weight of the building and increased forces. To reduce the cast and to increase the height of the building many researchers have proposed many methods one among them is composite construction (with concrete and steel structure). As the height of the building increases, lateral movement of the building also increases (sway). To reduce the sway one of the technique used is ‘bracing’. There are many types of bracings normally used in the practice such as x-bracing, v-bracing, inverted v-bracing, eccentric bracing, k-bracing etc. Also these bracing can be provided at different positions in the buildings. In the present study 15 storey steel structure of height 45m (3m each storey) was considered. The structure was designed as per IS 800:2007 code with dead load, live load earthquake load combinations and wind load combinations. Dynamic analysis (response spectra) was performed using E-tabs software assuming response reduction factor as 5, importance factor as 1, seismic zone II and type of soil is 2. The analysis was performed according to IS 1893. The analysis was performed for building without bracing, with X bracing and v-bracing. The Results were compared and studied. It was found that displacement of the structure was more in the structure without bracing than other models. It was also observed that lateral loads were more in the case of X-bracing. Finally it can be concluded that X-bracing is better for wind loading and V-bracing is better for earthquake loading yet more studies is required to conclude further.

1. INTRODUCTION

Structure is define as tall as it is significantly high than neighboring building or its quantity is lean sufficient to present the look of high buildings. The building of tall structure begin at closing stages of 19th century in Chicago, with development shown. This was made probable because of latest inventions such as the harmless elevator in 1853 and the phone in 1876 that enabled transfer of building material and the capability to commune to higher level. In adding up, the construction material altered as they go starting firewood and stonework to with steel frame by low stonework ramparts. Prior building that be build by weighty stonework wall was restricted to firm height by its individual self weight. By means of steel frame the building material might be thinner and act barely like front for climate defense and high rise building might be construct.

Steel construction is mainly frequently use in:

- High rise building since of its strong point low weight, and speed of construction.
- Industrial building since of its capability to make big width places at low cost
- Warehouse building for the similar cause
- Residential building in a method called light gauge steel construction.
- Temporary structure as these are rapid to set of connections and take away.

1.1 LATERAL LOADS:

High buildings be subjected to a variety of loads throughout its service life moment in time. It must be alive so designed to oppose the gravitational and lateral armed forces, both permanent and temporary, that will be call on to keep up during its structure and following service life. Major loads which tall building structure are subjected are given:
- Gravity load
 - Dead load & Live load Lateral load
- Seismic load
- Special load
 - Impact load & Blast load.

BRACING SYSTEM: The opposition to lateral loads from wind or an earthquake is cause for the progress of range of structural system. Bracing systems is one such structural method which form an vital element of framework. This construction had to be analyse prior to incoming at finest type, efficient understanding of bracing. This task is in relation to the effectiveness of with diverse type of bracing and by special brace profile pro bracings member for high rise steel frames. ETABS softwares is utilize for to reach the design of frame and bracings systems by the smallest amount heaviness plus suitable steel segment.
BRACING SECTIONS:

Type of Bracing:

There are two types of bracings system 1) Concentric Bracing System and 2) Eccentric Bracing System

Fig. 1-Example of bracings scheme to concentrically braced frame: (a) X-braced; (b) diagonally braced; (c) alternative diagonally braced; (d) V-braced; (e) inverted V-braced; and (f) K-braced

X-BRACED FRAME: An X-braced frame (Fig. 1(a)) had bracings member in tension to equally direction of loadings, if these be size to succumb previous to column otherwise beam fall short, ductility could developed. These usually design assume that compression brace do not donate rigidity otherwise force

DIAGONAL BRACES: Single bay of diagonal brace (Fig. 1(b) and (c)) react to path of loadings. Configuration (b) possibly greatly weak with elastic in path cause compressions in brace, as configurations (c) will be weak as well as extra elastic in storey with compression brace, most important to risk of soft-storey formations. This is plainly not suitable. by extra one diagonal brace bay, act could lapse to that of X-bracings if appropriate collection of bracings directions is selected.

V-BRACINGS: The V-braced provision of Fig. 1(d) and (e) experience as of truth that buckling’s ability of compression braces is possible elect considerably fewer than tensions give up capability of tension braces, so here is unavoidably out of equilibrium loads on horizontal beams when their ability, which must be resist in bendings of level part These restrict quantity of elastic that brace could build up and hence taken as a whole ductility. Where horizontal braces has great bending strength that could oppose out of equilibrium loads, hysteretic presentation of V-braced system is enhanced.

K-BRACES: The similar out of balance strength apply to K-brace (Fig. 1(f)) when brace arrive at their capability, but this instance it’s greatly extra power functional to columns – risky since columns collapse could cause broad fail pro this cause K-braces not allowed in seismic region.

Below mentioned models are considered for analysis as per Limit State Design.1) Without Brace model 2) X-brace model 3) V-brace model.

MODEL (WITHOUT BRACING) V-BRACED MODEL

X-BRACED MODEL

OBJECTIVES OF STUDY: The objectives of this work are

1) To study and understand the different lateral forces that acts on steel structure.
2) To analyse the steel structure by dynamic response spectrum method by using E-TABS for different load combination.
3) To apply different types of bracings to increases lateral stability.
4) To compare the steel structure behavior to lateral forces with and without bracings i.e To compare the time period, storey displacement, story drifts, and storey shear of steel structure with and without bracings for different load combinations.
METHODOLOGY:

Plan of the structure
3d view of frame structure

E-TABS

The present study is to study the lateral stability of high rise steel building comprising of beam, column. The study include of greatest lateral drift, base shear, time period, and story displacement generated in the frames for seismic zones III in India. For these cases, models has been created for steel framed building, analyzed with ETABS for seismic zones. This study also focused on applying different types of bracing system to structure to increase lateral stability of the structure and analysed with software E-TABS.

MATERIALS:

<table>
<thead>
<tr>
<th>Size of the building</th>
<th>12m X 12m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of structure</td>
<td>Steel frame structure</td>
</tr>
<tr>
<td>No of storays</td>
<td>15</td>
</tr>
<tr>
<td>Height of each floor</td>
<td>3m</td>
</tr>
<tr>
<td>Height of the building</td>
<td>45m</td>
</tr>
<tr>
<td>Depth of beam</td>
<td>ISMB 600</td>
</tr>
<tr>
<td>Depth of column</td>
<td>400X400X13mm(thick)BOX SECTION</td>
</tr>
<tr>
<td>No of modes considered</td>
<td>12</td>
</tr>
<tr>
<td>Depth of foundation</td>
<td>1.5m (it is not in scope)</td>
</tr>
<tr>
<td>Dead load</td>
<td>Self assigned by E-tabs(member weights)</td>
</tr>
<tr>
<td>Concrete</td>
<td>M20</td>
</tr>
<tr>
<td>Unit weight of RCC</td>
<td>25</td>
</tr>
<tr>
<td>Imposed load</td>
<td>4Knm/m2</td>
</tr>
<tr>
<td>Steel</td>
<td>Fe345</td>
</tr>
<tr>
<td>Diaphragms considered</td>
<td>Semi rigid</td>
</tr>
<tr>
<td>Considered loads for earthquake analysis</td>
<td>D L+SIDL+0.5L (since live load is greater than 3Knm/m2)</td>
</tr>
<tr>
<td>Total thickness of slab</td>
<td>100mm (designed as composite deck slab)(out of scope of this study)</td>
</tr>
<tr>
<td>Supports considered at base</td>
<td>fixed</td>
</tr>
</tbody>
</table>

Seismic zone
Response reduction factor
Importance factor
Response spectra
Damping
Type of soil

RESULTS:

LOAD COMBINATIONS:

- Analysis is performed for all load combinations as per IS code, Considered earthquake for the study.
- Wind load combination considered: 1.2DL+1.2LL+1.2SIDL+1.2WINDY
- Response spectrum combination considered: 1.2DL+1.2LL+1.2SIDL+1.2RY
From the above table, it is evident that all the modes are participating in the analysis that is 100%. As per the code, minimum 90% modes have to be participated, therefore, we achieved 100% mass participation.

TIME PERIOD AND FREQUENCIES

It is observed from the above table that the period of the first mode is observed to be 1.525 sec with a frequency of 0.656 cyc/sec.
CONCLUSION

1. Displacement of structure without bracing is more than that of with bracing by approximately 31 percent (in wind load combination).

2. Displacement of structure without bracing is more than that of with bracing by approximately 39 percent (in response spectra load combination).

3. Least bracing in wind load combination and response spectra combination is observed in structure with X-bracing and V-bracing respectively.

4. Minimum time period was observed for X-bracing in both the cases.

5. Lateral loads are observed to be more in the structure with X-bracing since weight of the structure is more in this case.

6. Displacements in wind load combination are more than response spectra combination, from which we can conclude that steel structures are more critical for wind loads.

7. From above tables we can say that structure with X-bracing is better for wind loading and V-bracing is better for earthquake loading, yet more studies has to be conducted for better understanding of bracings in different situations.

FUTURE SCOPE:

Above study was done for only 3 types of bracing namely X-bracing, V-bracing. Therefore following study can be done in future.

(1) To find the response of structure for other types of bracings.

(2) To find the response of structure with bracing at inside of the building.

(3) To find the response of structure by using combination of bracings.

(4) To find the response of structure with irregularities.

REFERENCES:

- K.S.Sable “Comparative study of seismic behavior of multistory steel structure and Conventional reinforced concrete framed structures”.
- K. Nageswarao “Seismic behavior of Reinforced Concrete Framed Structure and Conventional Floor Slab System”.
- Ashish Mohan Shivhare[2014] “Seismic analysis of parametric tall buildings with different geometry and constant plan area”.
- Rajini A.T “Behaviour of Steel Structural System under Seismic Loading”.
- Kalyan Choudary Kodli[2015] “Comparative study of seismic performance of high rise 30 story building with beam slab, flat slab and alternate flat beam slab systems in zone V”.
- Ashish Mohan Shivhare[2014] “Seismic analysis of parametric tall buildings with different geometry and constant plan area”.
- Rajini A.T “Behaviour of Steel Structural System under Seismic Loading”.
- K. Nageswarao “Seismic behavior of Reinforced Concrete Framed Structure and Conventional Floor Slab System”.