Optic Disk And Retinal Vessels Segmentation In Fundus Images

B.S.A.Kumar 1, S.Naga Lakshmi2

1Assistant Professor, Dept. of computer science& Engineering, Vignan’s Lara Institute of Technology&science, Andhra Pradesh, India
2Student, Dept. of computer science& Engineering, Vignan’s Lara Institute of Technology&science, Andhra Pradesh, India

Abstract - Mechanized analysis of retinal descriptions is a challenging research area that aims to provide mechanical methods to help in the early exposure and diagnosis of many eye diseases such as diabetic retinopathy and age related macular disintegration. Retinal image analysis is more and more prominent as a nonintrusive diagnosis method in modern ophthalmology. Thus an algorithm for vessel removal in retinal images is presented in this project. The first step consists of applying anisotropic dissemination filtering in the initial vessel network in order to renovate disconnected vessel lines and eliminate noisy lines. In the second step, a filter procedure allows detecting all vessels having similar proportions at a chosen scale. This algorithm is accompanied by Gabor filter to achieve further exactness. The optic disk disjuncture is performed using two methods, bilateral filter based smoothing and tint object disjuncture. The active method addresses one of the main issues in medical demonstration analysis, “the overlap tissue disjuncture.” Since the blood vessel blether into the optic disk area and misguide the graph cut algorithm through a short path, breaking the optic disk boundary, to achieve good disjuncture grades, the MRF image renovation algorithm eliminate vessel in the optic disk area without any transfer of the image structures before sub dividing the optic disk. On the other hand, the compensation factor incorporates vessel using local concentration characteristics to perform the optic disk disjuncture.

Key Words: Automatic disjuncture, binary image, MRF image.

1. Introduction

The disjuncture of retinal image structures has been of great awareness because it could be used as a nonintrusive diagnosis in up to date ophthalmology. The morphology of the retinal blood vessel and the optic disk is an important structural pointer for assessing the existence and sternness of retinal diseases such as diabetic retinopathy, high blood pressure, glaucoma, haemorrhages, vein closure, and neo vascularisation. However, to assess the thickness and tortuosity of the retinal blood vessel or the shape of the optic disk, physical altimetry has commonly been used by ophthalmologists, which is generally time intense and flat to human error, especially when the vessel structures are convoluted or a large number of images are acquired to be labeled by hand. Therefore, a unailing mechanized method for retinal blood vessel and optic disk disjuncture, attractive in computer-aided diagnosis.

An mechanized disjuncture and going over of retinal blood vessel features such as diameter, color, and tortuosity as well as the optic disk morphology allows ophthalmologists and eye care specialists to perform mass vision screening exams for early detection of retinal diseases and treatment assessment. This could prevent and reduce image impairments, time interconnected diseases, and many cardiovascular diseases, as well as reduce the cost of the screening.

Over the past few years, several disjuncture techniques have been employed for the disjuncture of retinal structures such as blood vessels and optic disks and diseases like lesions in fundus retinal images. However, the gaining of fundus retinal images under different conditions of elucidation, declaration and field of view (FOV), and the overlap tissue in the retina cause a significant humiliation of the performance of automated blood vessels and optic disk disjuncture. Thus, there is a need for a reliable technique for retinal vascular tree removal and optic disk exposure, which preserves various vessel and optic disk shapes. In the following subdivision, we briefly review the previous studies on the blood vessel disjuncture and optic disk disjuncture separately.

2. Blood Vessel disjuncture

Blood vessels can be seen as thin stretched out structures in the retina, with variation in thickness and length. In order to subdivision the blood vessel from the fundus retinal image, we have implemented a preprocessing technique, which consists of an effective adaptive histogram equalization and tough distance transform. This operation improves the toughness and the exactness of the graph cut algorithm. Fig. 1 shows the illustration of the vessel disjuncture algorithm.

A. Preprocessing

We apply a contrast enhancement process to the green channel image similar to the work presented in [20]. The intensity of the image is inverted, and the illumination is
equalized. The follow-on image is improved using an adaptive histogram equalizer given by

$$I_{\text{Enhanced}} = \left(\sum_{p \in R(p)} s(I(p) - P(p_{\text{avg}})) \right)^r \cdot M$$

Where I is the green channel of the fundus retinal color image, p denotes a pixel, and p_{avg} is the neighborhood pixel around p. $R(p)$ is the square window neighborhood with length h. $s(d) = 1$ if $d > 0$, and $s(d) = 0$ otherwise with $d = s(I(p) - I(p_{\text{avg}}))$. $M = 255$ value of the maximum intensity in the image. r is a parameter to control the level of enhancement. Increasing the value of r would also increase the contrast between vessel pixels and the Bg. The experimental values of the window length was set to $h = 81$ and $r = 6$.

A binary morphological open process is applied to prune the enhanced image, which discards all the misclassified pixels. This approach significantly reduces the false positive, since the enhanced image will be used to construct the graph for disjuncture.

A distance map image is created using the distance transform algorithm. This is used to analyse the path and the magnitude of the vessel gradient. The detachment map of the whole image and a sample vessel with arrows indicating the path of the gradients, respectively. From the sample vessel image, we can see the center line with the brightest pixels, which are progressively reduced in intensity in the direction of the edges (image gradients). The arrows are referred to as vector field, which are used to construct the graph in the next sections.

Fig. 1. Vessel disjuncture algorithm

3. Optic Disk disjuncture

The optic disk disjuncture starts by defining the location of the optic disk. This progression used the union feature of vessels into the optic disk to estimate its location. The disk area is then sub divided using two different automated methods (MRF image reconstruction and compensation factor). Both methods use the convergence feature of the vessels to identify the position of the disk. The MRF method is applied to eliminate the vessel from the optic disk region. This process is known as image reconstruction and it is performed only on the vessel pixels to avoid the modification of other structures of the image. The renovated image is free of vessels and it is used to sub divide the optic disk via graph cut. In contrast to MRF method, the reimbursement factor approach sub divide the optic disk using prior local intensity knowledge of the vessels. Fig. 2 shows the overview of both the MRF and the reimbursement factor methods.

Fig. 2. (a) MRF image renovation method diagram and (b) reimbursement factor method diagram.

A. Optic Disk Location

Inspired by the method proposed in [14], which effectively locates the optic disk using the vessels, we use the binary image of vessels segmented in Section III to find the location of the optic disk. The process iteratively traces toward the centroid of the optic disk. The vessel image is pruned using a morphological open process to eliminate thin vessels and keep the main arcade. The centroid of the arcade is calculated using the following Formulation:

$$C_x = \sum_{t-1}^{K} \frac{x_i}{K} \quad C_y = \sum_{t-1}^{K} \frac{y_i}{K}$$

where x_i and y_i are the coordinates of the pixel in the binary image and K is the number of pixels set to 1 (pixels marked as blood vessels) in the binary image. Given the gray scale intensity of a retinal image, we select 1% of the brightest region. The algorithm detects the brightest region with the most number of pixels to determine the location of the optic disk with respect to the centroid point (right, left, up, or down). The algorithm adjusts the centroid point iteratively until it reaches the vessel convergence point or the center of
the main arcade (center of the optic disk) by reducing the distance from one centroid point to next one in the direction of the brightest region, and correcting the central position inside the arcade accordingly. Fig. 8 shows the process of estimating the location of the optic disk in a retinal image. It is important to notice that the vessel convergence point must be detected accurately, since this point is used to automatically mark Fg seeds. A point on the border of the optic disk may result in some false Fg seeds. After the detection of the vessel convergence point, the image constrained a region of interest (ROI) including the whole area of the optic disk to minimize the processing time. This ROI is set to a square of 200 × 200 pixels concentric with the detected optic disk center. Then, an automatic initialization of seeds (Fg and Bg) for the graph is performed. A neighborhood of 20 pixels of radius around the center of the optic disk area is marked as the Fg pixels, and a band of pixels around the perimeter of the image are selected.

B. Optic Disk disjuncture with MRF Image Renovation

The high contrast of blood vessels inside the optic disk presented the main difficulty for its disjuncture as it misguides the disjuncture through a short path, breaking the continuity of the optic disk boundary. To address this problem, the MRF based renovated method presented in [25] is adapted in our study. We have selected this approach because of its toughness. The objective of our algorithm is to find a best match for some missing pixels in the image; however, one of the weaknesses of the MRF-based renovation is the requirement of intensive calculation. To overcome this problem, we have limited the renovation to the ROI, and using prior sub divided retina vascular tree, the renovation was performed in the ROI. An overview diagram of the optic disk disjuncture with the MRF image renovation is shown in Fig. 2.

4. Results

Fig 3. Input fundus image

Fig 4. Green Plane of the input image

Fig 5. CLAHE output with optic disc position

Fig 6. Cropped optic disk

Fig 7. Binarized Output

