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Abstract—many network solutions and overlay networks 
utilize probabilistic techniques to reduce information 
processing and cost of networking. This article presents a 
number of frequently used and useful probabilistic 
techniques. Bloom filters and their variants are of prime 
importance, and they are heavily used in various distributed 
systems. This has been reflected in recent research and many 
new algorithms have been proposed for distributed systems 
that are either directly or indirectly based on Bloom filters. 
To keep false positive probabilities low, the size of the bloom 
filter must be dimensioned a priori to be linear in the 
maximum number of keys inserted, with the linearity 
constant ranging typically from one to few bytes. 
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I.INTRODUCTION 

 
The bloom filter is a bit-vector data structure that provides 
a compact representation of a set of elements (keys). It 
supports insertion of elements and membership queries. A 
membership answer is probabilistically correct in the sense 
that it allows a small probability of a false positive (i.e., an 
incorrect answer for a non-member element). The bloom 
filter allows tradeoffs between small size (compactness) 
and low false positives (accuracy). To keep false positives 
low, the size of the bloom filter must be dimensioned a 
priori to be linear in the maximum number of keys inserted, 
with the linearity constant typically ranging from one to 
few bytes. Fast matching of arbitrary identifiers to values is 
a basic requirement for a large number of applications. 
Data objects are typically referenced using locally or 
globally unique identifiers. Recently, many distributed 
systems have been developed using probabilistic globally 
unique random bit strings as node identifiers. For example, 
a node tracks a large number of peers that advertise files or 
parts of files. Fast mapping from host  identifiers to object 
identifiers and vice versa are needed. The number of these 
identifiers in memory may be great, which motivates the 
development of fast and compact matching algorithms. 
Given that there are millions or even billions of data 
elements, developing efficient solutions for storing, 
updating, and querying them becomes increasingly 
important. The key idea behind the data structures 
discussed in this survey is that by allowing the 
representation of the set of elements to lose some 
information, in other words to become lossy, the storage 
requirements can be significantly reduced. Bloom in 1970. 
Bloom first described a compact probabilistic data 

structure that was used to represent words in a dictionary. 
There was little interest in using Bloom filters for 
networking until 1995, after which this area has gained 
widespread interest both in academia and in the industry. A 
bloom filter is simply used to test whether the element is 
present in the set or not. 
Its main properties are: 
 
1. The amount of space needed to store the bloom filter is 
very less when compared to the amount of data belonging 
to the set being tested.  
 
2. The time needed to check whether an element is a 
member of a given set is independent of the number of 
elements contained in the set.  
 
3. False negatives are not possible.  
 
4. False positives are possible, but their frequency can 
be controlled. In practice, it is a trade off between 
space/time efficiency and the false positive frequency.  
 

II. BLOOM FILTER 
 
Whenever a list or set is used, and space is at a premium, 
consider using a Bloom filters if the effect of false 
positives can be mitigated. A Bloom filters is an array of 
m bits for representing a set S = {x1, x2 . . . xn} of n 
elements. Initially all the bits in the filters are set to zero. 
The key idea is to use k hash functions, hi(x), 1 ≤ i ≤ k to 
map items x ∈ S to random numbers uniform in the 
range 1, . . .m. The hash functions are assumed to be 
uniform. The MD5 hash algorithm∈ is a popular choice 
for the hash functions. An element x S is inserted into the 
filters by setting the bits hi(x) to one for 1 ≤ i ≤ k. 
Conversely, y is assumed a member of S if the bits hi(y) 
are set, and guaranteed not to be a member if any bit 
hi(y) is not set. The weak point of Bloom filters is the 
possibility for a false positive. False positives are 
elements that are not part of S but are reported being in 
the set by the filters. 
 
 
 
 
 

 
 
 

Fig 1. Overview of Bloom Filters 
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The bloom filter utilizes the hashing technique for the 
search of best document. The bloom filter gets the Query 
from the node, it performs multiple hashing in the query 
and as a result it converts the query into URLs. A BF is a 
loss but succinct and efficient data structure to represent a 
set S, which can efficiently process the membership query 
such as “is element x in set S.” 
 

III.HASHING TECHNIQUES 
 
Here  I briefly present hashing techniques that are the basis 
for good Bloom filter implementations. I start with perfect 
hashing, which is an alternative to Bloom filters when the 
set is known beforehand and it is static. Double hashing 
allows reducing the number of true hash computations. 
Partitioned hashing and multiple hashing deal with how 
bits are allocated in a Bloom filter. Finally, the use of simple 
hash functions is considered. 
 
A. Perfect Hashing Scheme: A simple technique called 
perfect hashing (or explicit hashing) can be used to store a 
static set S of values in an optimal manner using a perfect 
hash function. 
 
A perfect hash function is a computable bijection from S to 
an array of |S| = n hash buckets. The n-size array can be 

∈used to store the information associated with each 
element x S [1]. Bloom filter like functionality can be 
obtained by, given a set of elements S, first finding a perfect 
hash function P and then storing at each location an f = 1/ǫ 
bit fingerprint, computed using some (pseudo-)random 
hash function H. 
 
B. Double Hashing: The improvement of the double 
hashing technique over basic hashing is being able to 
generate k hash values based on only two universal hash 
functions as base generators (or “seed” hashes). As a 
practical consequence, Bloom filters can be built with less 
hashing operations without crificing performance. Kirsch 
and Mitzenmacher have shown [2] that it requires only 
two independent hash functions, h1(x) and h2(x), to 
generate additional “pseudo” hashes defined as: 
 
hi(x) = h1(x) + f(i) ∗ h2(x)                 (10) 
 
where i is the hash value index, f(i) can be any arbitrary 
function of i (e.g., i2), and x is the element being hashed. For 
Bloom filter operations, the double hashing scheme reduces 
the number of true hash computations from k down to two 
without any increase in the asymptotic false positive 
probability [2]. 
 
C. Partitioned Hashing: In this hashing technique, the k hash 
functions are allocated disjoint ranges of m/k consecutive 
bits instead of the full m-bit array space , probability of a 
specific bit being 0 in a partitioned Bloom filter can be 
approximated to: 

(1 − k/m)n ≈ e−kn/m  
 
While the asymptotic performance remains the same, in 
practice, partitioned Bloom filters exhibit a poorer false 
positive performance as they tend to have larger fill 
factors (more 1s) due to the m/k bit range restriction. 
This can be explained by the observation that: Lookup 
of x simply consists of computing P(x) and checking 
whether∈ the stored hash function value matches H(x). 
When x S, the correct value is always returned, and 
when x do not belong to S a false positive (claiming the 
element being in S) occurs with probability at most ǫ. 
This follows from the definition of 2- universal hashing 
by Carter and Wengman [3], that any element y not in S 
has probability at most ǫ of having the same hash 
function value h(y) as the element in S that maps to the 
same entry of the array. While space efficient, this 
approach is disconsidered for dynamic environments, 
because the perfect hash function. 
 
D. Multiple Hashing: Multiple hashing is a popular 
technique that exploits the notion of having multiple hash 
choices and having the power to choose the most 
convenient candidate. When applied for hash table 
constructions, multiple hashing provides a probabilistic 
method to limit the effects of collisions by allocating 
elements more-or-less evenly distributed. The original idea 
was proposed by Azar et al. in his seminal work on 
balanced allocations [4]. Formulating hashing as a balls 
into bins problem, the authors show that if n balls are 
placed sequentially into m for m = O(n) with each ball 
being placed in one of a constant d = 2 randomly chosen.  
 
E. Simple Hash Functions: A common assumption is to 
consider output hash values as truly random, that is, each 
hashed element is independently mapped to a uniform 
location. While this is a great aid to theoretical analyses, 
hash function implementations are known to behave far 
worse than truly random ones. On the other hand, 
empirical works using standard universal hashing have 
been reporting negligible 
 
differences in practical performance compared to 
predictions assuming ideal hashing (see [6] for the case of 
Bloom filters). 
 

IV. BLOOM FILTER VARIANTS 
 
A number of Bloom filter variants have been proposed 
that address some of the limitations of the original 
structure, including counting, deletion, multisets, and 
space-efficiency. We take up few variants here. 
 
A. Compressed Bloom Filter: 
 
Compressing a Bloom filter improves performance when a 
Bloom filter is passed in a message between distributed 
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nodes. This structure is particularly useful when 
information must be transmitted repeatedly, and the 
bandwidth is a limiting factor[7]. Compressed Bloom filters 
are used only for optimizing the transmission (over the 
network) size of the filters. This is motivated by 
applications such as Web caches and P2P information 
sharing, which frequently use Bloom filters to distribute 
routing tables. The key idea in compressed Bloom filters is 
that by changing the way bits are distributed in the filter, it 
can be compressed for transmission purposes. This is 
achieved by choosing the number of hash functions k in 
such a way that the entries in the m vector have a smaller 
probability than ½ of being set. 
 
B. Spectral Bloom Filters: 
 
Spectral Bloom filters generalize Bloom filters to storing 
an approximate multiset and support frequency queries 
[8]. The membership query is generalized to a query on 
the multiplicity of an element. The answer to any 
multiplicity query is never smaller than the true 
multiplicity, and greater only with probability ǫ. In this 
sense, spectral refers to the range within which 
multiplicity answers are given. The space usage is similar 
to that of a Bloom filter for a set of the same size 
(including the counters to store the frequency values). 
The time needed to determine a multiplicity of k is 
O(logk).The query time is Θ(log(1/ϵ)). The answer 
estimate is given by returning the minimum value of the k 
counters determined by the hash functions. 
 
C. Space Code Bloom Filter: 
 
Per-flow traffic measurement is crucial for usage 
accounting, traffic engineering, and anomaly detection. 
Previous methodologies are either based on random 
sampling (e.g., Cisco’s NetFlow), which is inaccurate, or 
only account for the ”elephants”. A data structure called 
Space Code Bloom Filter (SCBF) can be used to measure 
per-flow traffic approximately at high speeds. SCBF 
employs a Maximum Likelihood Estimation (MLE) method 
to measure the multiplicity of an element in the multiset. 
 
D. Decaying Bloom Filter: 
 
The Decaying Bloom Filter (DBF) structure has been 
proposed for this application scenario. DBF is an extension 
of the counting Bloom filter and it supports the removal of 
stale elements from the structure as new elements are 
inserted. DBF may produce false positive errors, but not 
false negatives as is the case with the basic Bloom filter. A 
variant of DBF has been applied for hint-based routing in 
wireless sensor networks [9]. This motivates approximate 
detection of duplicates among newly arrived data elements 
of a data stream. This can be accomplished within a fixed 
time window. 
 

V. BLOOM FILTERS IN DISTRIBUTED COMPUTING 
 

We have surveyed techniques for probabilistic 
representation of sets and functions. The applications of 
these structures are many fold, and they are widely used 
in various networking systems, such as Web proxies and 
caches, database servers, and routers. 
 
A. Caching 
 
Bloom filters have been applied extensively to caching in 
distributed environments. To take an early example, Fan, 
Cao, Almeida, and Broader proposed the Summary Cache 
[10], [11] system, which uses Bloom filters for the 
distribution of Web cache information. The system 
consists of cooperative proxies that store and exchange 
summary cache data structures, essentially Bloom filters. 
When a local cache miss happens, the proxy in question 
will try to find out if another proxy has a copy of the Web 
resource using the summary cache. If another proxy has a 
copy, then the request is forwarded there. In order for 
distributed proxy-based caching to work well, the proxies 
need to have a way to compactly summarize available 
content. In the Summary Cache system, proxies 
periodically transfer the Bloom filters that represent the 
cache contents (URL lists). 
 
Google’s Bigtable system that is used by many massively 
popular Google services, such as Google Maps and 
Google Earth, and Web indexing. Bigtable is a distributed 
storage system for structured data that has been 
designed with high scalability requirements in mind, for 
example capability to store and query petabytes of data 
across thousands of commodity servers [12]. A Bigtable 
is a sparse multidimensional sorted map. The map is 
indexed by a row key, column key, and a timestamp. 
Each value in the map is an uninterpreted array of bytes. 
Bigtable uses Bloom filters to reduce the disk lookups 
for non-existent rows or columns [12]. As a result the 
query performance of the database has to rely less on 
costly disk operations and thus performance increases. 
 
B. P2P Networks 
 
Bloom filters have been extensively applied in P2P 
environments for various tasks, such as compactly storing 
keyword- based searches and indices [13], synchronizing 
sets over network, and summarizing content. The 
exchange of keyword lists and other metadata between 
peers is crucial for P2P networks. Ideally, the state should 
be such that it allows for accurate matching of queries and 
takes sublinear space (or near constant space). The later 
versions of the Gnutella protocol use Bloom filters [14] to 
represent the keyword lists in an efficient manner. In 
Gnutella, each leaf node sends its keyword Bloom filter to 
an ultra-node, which can then produce a summary of all 
the filters from its leaves, and then sends it to 
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neighbouring ultra-nodes. The ultra-nodes are hubs of 
connectivity, each being connected to more than 32 other 
ultra node  
 
D. Monitoring and Measurement 
 
Network monitoring and measurement are key 
application areas for Bloom filters and their variants. We 
briefly examine some key cases in this domain, for 
example detection of heavy flows, Iceberg queries, packet 
attribution, and approximate state machines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig:2-tier gnutella architecture 
 
A. Heavy Flows: Bloom filters have found many applications 
in measurement of network traffic. One particular 
application is the detection of heavy flows in a router. 
Heavy flows can be detected with a relatively small amount 
of space and small number of operations per packet by 
hashing incoming packets into a variant of the counting 
Bloom filter and incrementing the counter at each set bit 
with the size of the packet. Then if the minimum counter 
exceeds some threshold value, the flow is marked as a 
heavy flow [15]. 
 
B. Iceberg Queries: An Iceberg query is such that identifies 
all items with frequency above some given threshold. 
Bloom filter variants that are able to count elements are 
good candidate structures for supporting Iceberg queries. 
In networking, low-memory approximate histogram 
structures are needed for collecting network statistics at 
runtime. For example, in some applications it is necessary 
to track flows across domains and perform, to name a few 
examples, congestion and security monitoring. Iceberg 
queries can be used to detect Denial-of-Service attacks. 
 

VI. BLOOM FILTERS FOR SIMILARITY TESTING 
 
Observe that we can view each document to be a set in 
Bloom filter parlance whose elements are the CDCs that it 
is composed of. Given that Bloom filters compactly 
represent a set, they can also be used to approximately 

match two sets. Bloom filters, however, cannot be used 
for exact matching as they have a finite false-match 
probability but they are naturally suited for similarity 
matching. For finding similar documents, we compare the 
Bloom filter of one with that of the other. In case the two 
documents share a large number of 1’s (bit-wise AND) 
they are marked as similar. In this case, the bit-wise AND 
can also be perceived as the dot product of the two bit 
vectors. If the set bits in the Bloom filter of a document 
are a complete subset of that of another filter then it is 
highly probable that the document is included in the 
other. Web pages are typically composed of fragments, 
either static ones (e.g., logo images), or dynamic (e.g., 
personalized product promotions, local weather) [16]. 
When targeting pages for a similarity based “grouping”, 
the test for similarity should be on the fragment of 
interest and not the entire page. 
 
Bloom filters, when applied to similarity detection, have 
several advantages. First, the compactness of Bloom filters 
is very attractive for storage and transmission whenever 
we want to minimize the meta-data overheads. Second, 
Bloom filters enable fast comparison as matching is a 
bitwise-AND operation. Third, since Bloom filters are a 
complete representation of a set rather than a 
deterministic sample (e.g., shingling), they can determine 
inclusions effectively. 
 

VII. SUMMARY 
 
Bloom filters are a general aid for network processing and 
improving the performance and scalability of distributed 
systems. The space required by the bloom filter is very less 
when compared to the size of the data in the element set. 
Compressed bloom filters are used to optimize the data to 
be transmitted in the distributed system. This 
automatically increases the performance of the system in 
distributed system. The bloom filters can be used for the 
large data to know whether the particular element is 
present in the set or not. Per flow traffic can be measured 
easily in the heavy traffic by the usage of space code bloom 
filters . the spectral bloom filters generalize bloom filters to 
storing an approximate multiset and support frequency 
queries. Spectral refers to the range within which 
multiplicity answers are given. Decaying bloom filter 
supports for the removal of stale elements from the 
structure as new elements are inserted. It may produce 
false positive errors but not false negatives as in the case of 
the basic bloom filters. 
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