IRIET Volume: 04 Issue: 07 | July -2017

www.irjet.net

p-ISSN: 2395-0072

# SEISMIC ANALYSIS AND COMPARATIVE STUDY OF A STRUCTURE WITH SHEARWALL AND WITHOUT SHEARWALL FRAME SYSTEM

# Obaid Yassin, M-Tech (Structure and Foundation Engineering) Rizwanullah, Assistant Professor

Department of Civil Engineering, Al-Falah University, Faridabad, India \_\_\_\_\_\*\*\*\_\_\_\_\_

**Abstract-**The main objective of the research work presented in this paper is to study the seismic behavior and to compare the results of buildings with reinforced concrete shearwall and without shearwall. Three buildings with same plan and equal number of storeys with two different configurations of shearwalls and one structure with no shearwall are considered. A brief review of design concept is presented and need of shear wall, effect of earthquake are discussed.Response spectrum analysis has been done to buildings with different configurations of shearwall with same plan. The storey displacements are obtained and compared to each other for different models to meet the shear wall effect. The analysis and design of models are done according to IS codes in an eco friendly software ETAB 2015.

**Kev Words:** - Etabs , Response spectrum, Shearwall, Stiffness, Story drifts

## 1. INTRODUCTION

Shear walls are vertical elements that resists the horizontal forces. Shear walls are like verticallyoriented wide beams that carry earthquake loads, wind loads and transfers them to the foundation. Shear wall system is often used for resisting the lateral forces caused by seismic excitation, because of their high stiffness and strength. Shear wall can be used effectively for controlling the drift against seismic loads acting on them.

### 1.1 MODEL CONFIGURATION

Three buildings with thirty five story regular reinforced concrete building are considered in seismic zone IV. The beam length in (x) transverse direction are 6m ,and beams in (y) direction are of length 6m. Figure 1 and 2 shows the plan and 3D view of the thirty five story building having 7 bays in x-direction and seven bays in y-direction upto twenty story and five bays in x-direction and five bays in y-direction from story twenty one to thirty five. Story height of each building is assumed

3m.Beam cross section 450X600 mm and Column cross section is 750x750 mm (upto 10 floors), 600x600 (from  $11^{th}$  story to  $20^{th}$  storey) and 450x450 above.

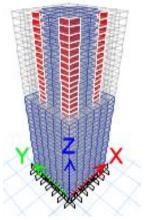



Fig-1.1:Building1

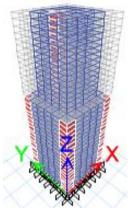



Fig-1.2:Buildind2

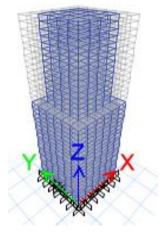



Fig-1.3:Building 3 without shearwall

Volume: 04 Issue: 07 | July -2017 www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

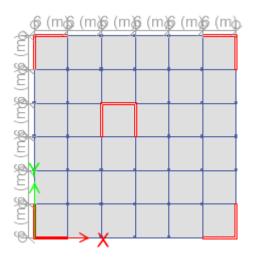



Fig-1.4:Plan Of Building 2

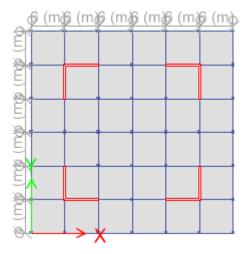



Fig-1.5:Plan Of building 1

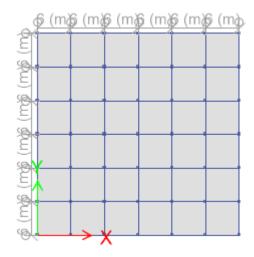



Fig-1.6:Plan Of Building3

#### 1.2 TIME PERIOD

IS-1893-2016 defines different Sa/g values for different values of approximate time period (T). The fundamental natural period (Ta) is taken for moment resisting frame building without brick infill panels as  $Ta = 0.075h^{0.75}$ , Where, h = Height of the building in m

Table 1.1- Time Period for Building 1,2 and 3.

| Time Period | Building 1 | Building 2 | Building 3 |
|-------------|------------|------------|------------|
| Global x    | 2.46sec    | 2.46sec    | 2.46sec    |
| Global y    | 2.46sec    | 2.46sec    | 2.46sec    |

#### 1.3 DESIGN BASE SHEAR

The design base shear of a building can be calculated by using the code IS-1893-2002

$$V_b = A_{h*}W$$

Where A<sub>h</sub>=design horizontal seismic coefficient

W= seismic weight

The Design horizontal seismic coefficient (Ah) is a function of peak ground acceleration (z), Importance Factor (I), Response Reduction Factor (R) and Design acceleration coefficient (Sa/g) for different types of soil normalized corresponding to 5 % damping.

$$A_{h} = \frac{ZIS_{h}}{2Rg}$$

Sa/g values for medium soil according to IS-1893-2002

For medium soil sites

$$\frac{S_a}{g} = \begin{cases} 1+15 T; & 0.00 \le T \le 0.10 \\ 2.50 & 0.10 \le T \le 0.55 \\ 1.36/T & 0.55 \le T \le 4.00 \end{cases}$$

# International Research Journal of Engineering and Technology (IRJET)

Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

Table 1.2- Design Base Shear of Building 1,2 and 3 for Equivalent Static Load

| Design     | Building 1 | Building 2 | Building 3 |
|------------|------------|------------|------------|
| base shear |            |            |            |
| Global     | 4524.8659  | 4647.1664  | 1949.8072  |
| X(KN)      |            |            |            |
| Global     | 4507.9978  | 4860.1705  | 1894.1824  |
| Y(KN)      |            |            |            |

### 1.4 STIFFNESS

Table-1.3:Story Stiffness in x direction for equalent static loads

| Story   | SW2      | SW1      | WSW      |
|---------|----------|----------|----------|
| Story35 | 118793.7 | 120253.7 | 177090.4 |
| Story34 | 248371.8 | 231602   | 264527.4 |
| Story33 | 366247.6 | 321026.3 | 309371.3 |
| Story32 | 471965.9 | 391462.8 | 337344.7 |
| Story31 | 566407.5 | 447765   | 356611.4 |
| Story30 | 650790.7 | 493787.8 | 370874.1 |
| Story29 | 726590   | 532496.3 | 382037.7 |
| Story28 | 795403.3 | 566181.5 | 391199.9 |
| Story27 | 858858.6 | 596746.5 | 399041.5 |
| Story26 | 918594.3 | 626009   | 406011.8 |
| Story25 | 976279.2 | 656094.7 | 412431.8 |
| Story24 | 1033621  | 690058.6 | 418554   |
| Story23 | 1092718  | 733406.6 | 425075.7 |
| Story22 | 1155339  | 795987.3 | 435797.6 |
| Story21 | 1227680  | 922322.9 | 508573   |
| Story20 | 1381498  | 1476312  | 1228143  |
| Story19 | 1482575  | 1589763  | 1251401  |
| Story18 | 1585220  | 1700410  | 1264875  |
| Story17 | 1678840  | 1803913  | 1273926  |
| Story16 | 1767401  | 1904355  | 1282296  |
| Story15 | 1852962  | 2004154  | 1290421  |
| Story14 | 1938149  | 2106076  | 1298612  |
| Story13 | 2025946  | 2213332  | 1307026  |
| Story12 | 2119832  | 2330048  | 1315901  |

| Story11 | 2225127  | 2459581  | 1325328 |
|---------|----------|----------|---------|
| Story10 | 2340574  | 2617225  | 1337849 |
| Story9  | 2512603  | 2811380  | 1526922 |
| Story8  | 2678568  | 3026401  | 1541771 |
| Story7  | 2902680  | 3306739  | 1558958 |
| Story6  | 3198674  | 3677287  | 1588130 |
| Story5  | 3616874  | 4197985  | 1654464 |
| Story4  | 4255396  | 4988078  | 1848429 |
| Story3  | 5354901  | 6339829  | 2712356 |
| Story2  | 7675323  | 9175584  | 9790680 |
| Story1  | 16868653 | 20218692 | 9787738 |
| Base    | 0        | 0        | 0       |

e-ISSN: 2395-0056

Table -1.4Storey Stiffness in Y Direction for equalent static loads

| Story   | SW2      | SW1      | WSW      |
|---------|----------|----------|----------|
| Story35 | 109819.6 | 118793.7 | 176903.3 |
| Story34 | 220006.3 | 248371.8 | 264322   |
| Story33 | 316896.7 | 366247.6 | 309180.8 |
| Story32 | 400453.5 | 471965.9 | 337170.6 |
| Story31 | 472488.3 | 566407.5 | 356451.3 |
| Story30 | 535119.8 | 650790.7 | 370725.3 |
| Story29 | 590571.8 | 726590   | 381898   |
| Story28 | 641014   | 795403.3 | 391067.4 |
| Story27 | 688548.8 | 858858.6 | 398914.5 |
| Story26 | 735282.7 | 918594.3 | 405889.2 |
| Story25 | 783481.4 | 976279.2 | 412312.4 |
| Story24 | 835811.1 | 1033621  | 418436.9 |
| Story23 | 895917.9 | 1092718  | 424959.1 |
| Story22 | 968583.5 | 1155339  | 435674.7 |
| Story21 | 1068614  | 1227680  | 508338.4 |
| Story20 | 1390491  | 1381498  | 1226435  |
| Story19 | 1504897  | 1482575  | 1249737  |
| Story18 | 1618667  | 1585220  | 1263255  |
| Story17 | 1724348  | 1678840  | 1272349  |
| Story16 | 1825441  | 1767401  | 1280750  |
| Story15 | 1924372  | 1852962  | 1288895  |