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Abstract – In this paper, we have studied vertex 
coloring, chromatic and achromatic number of a 
graph. For certain n , upper bound of A(n) is 
discussed. A recurring relation is obtained for A(n), n 
≥ 4. 
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1.INTRODUCTION  
 
A k-colouring of a graph G is a labeling  
f : V (G) →S, where |S| = k . Often we use S = [k] = {1, 2, 
.., k}. The labels are colours. The vertices of one colour 
form a colourclass. A k-colouring is proper if adjacent 
vertices have different colours or labels. 
 
       A graph is k-colourable if it has a proper k-
colouring. The chromatic number χ(G) is the least k, 
such that G is k-colourable.i.e there does not exist any 
proper  k − 1 colouring. 
The Achromatic number : The largest k so that there 
exists a complete k-colouring of V (G) is called  the 
achromatic number Ψ(G). For any k between χ(G) 
 and Ψ(G) a complete k-colouring of G exists. 
Line Graph:  The Line graph of G, written as L(G), is 
the simple graph whose  vertices are the edges of G, 
with ef∈ E(L(G)) when e and f have a common 
 endpoint in G. 
Let G = Kn , then Ψ(G) = Ψ(Kn ) = A(n) 
 
The achromatic number A(n) of the line graph of K n 
i.e. A(n) = Ψ(L(Kn )). 
 
Results and Discussion: 
 
Lemma 1. For any t < (n − 1) /2 A(n) ≤ max {g(n, t + 1), 
h(n, t + 1)} 

Proof. Consider any complete k- colouring of  

L(K n ). Assume that there is a 

 colourclass Γ with s ≤ t edges of Kn in it. (i.e. 2s vertices of 
L( K n ) 

Let S be the set of 2s nodes of Kn covered by the s edges in 
Γ. 

 An edge of Kn is adjacent to an edge of Γ in L(K n ) has an 
endnode inS Since K n is n − 1 regular, at each point of S,  
there are n − 1 edges of K n incident with it. i.e.2s(n − 1) 
edges in K n incident on S. 

Thus, there are 2s(2s − 1) posssible edges in S,but counted 
twice. 

Therefore, total No. of edges in S is 

2s(2s − 1)]/2= S(2s − 1) 

Thus there are s(2s − 1) edges of K n incident with two 
points of S. 

Thus No. of edges of K n not in Γ but incident with a point of 
S is 2s(n − 1) − s(2s − 1) − s  

= 2sn − 2s − 2s 2 + s − s 

= 2s(n − s − 1) 

= g(n, s) 

Now, Γ is a colourclass and k-colouring is a proper 
colouring. 

Therefore, Γ must be adjacent to atleast one edge of every 
other colourclass. 

Thus, there are atleast k −1 edges starting from S but 
having other endpoints outside Γ and S There are such g(n, 
s) edges. 

k − 1 ≤ g(n, s) 

k ≤ g(n, s) + 1 

But, s ≤ t and t <(n − 1)/2 and g(n, s) is increasing for t < (n 
− 1)/2 

g(n, s) + 1 ≤ g(n, t) + 1 

 k ≤ g(n, t) + 1  

Hence, A(n) ≤ max{g(n, t) + 1, h(n, t) + 1} as if g(n, t) + 1 is 
maximum A(n) = k ≤ g(n, t) + 1. if g(n, t) + 1 is not 
maximum then g(n, t) + 1 ≤ h(n, t) + 1 

But k = A(n) ≤ g(n, t) + 1 ≤ h(n, t) + 1 

Thus, A(n) ≤ max {g(n, t) + 1, h(n, t) + 1} 

Now if no colourclass contains No. of edges ≤ t i.e. every 
colourclass contains atleast t + 1 edges. 

But there are in all n(n − 1)/2 edges, 
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We can have almost  [(n[n-1]/2)/(t+1)] colourclasses. i.e. 
[n(n−1)]/(2(t+1) = h(n, t + 1) Thus, k ≤ h(n, t + 1) 

Thus by similar arguements,  

A(n) = k ≤ max{g(n, t) + 1, h(n, t) + 1} 

Notations: 
Let [x] denote the greatest integer in x. 
βt(n) = max{g(n, t) + 1, [h(n, t + 1) ]} 
B(n) = min{βt (n)|0 < t < 
(n-1)/2 
Lemma can be formulated as A(n) ≤ B(n) 
 
Lemma 2. suppose t ≥ 2, 4t2  − t ≤ n ≤ 4t2  + 3t − 1 then B(n) 
= g(n, t) + 1, If 4t2 + 3t ≤ n ≤ 4(t + 1)2 − t − 2 then B(n) = 
[h(n, t + 1)]. 
Proof. We need to compare g and h. Note that g is an 
integer. 
 
So, g(n, t) + 1 ≤ [h(n, t)] iff g(n, t) + 1 ≤ h(n, t) 
 
i.e. iff 0 ≤ h(n, t) − g(n, t) − 1 
 
Let p(n, t) = h(n, t) − g(n, t) − 1 
 
Thus  g(n, t) + 1 ≤[ h(n, t)] iff p(n, t) ≥ 0 .......(1) 
 
p(n, t) = h(n, t) − g(n, t) − 1 
 
=[n(n − 1) 
]/2t− 2t(n − t − 1) − 1 
 
=[n(n − 1) − 4t2 (n − t − 1) − 2t 
]/2t 
Now 2tp(n, t) = n2 − n − 4t2 n + 4t 3+ 4t2− 2t 
 
= n2 −(4t2 + 1)n +  4t 3+ 4t2− 2t 
Now consider q(n, t) = h(n, t + 1) − g(n, t) − 1 
 
Thus, g(n, t) + 1 ≤ [h(n, t + 1)] 
iff q(n, t) ≥ 0  .........(2) 
 
q(n, t) = h(n, t + 1) − g(n, t) − 1 
 
=[n(n − 1)]/[2(t + 1)]− 2t(n − t − 1) − 1 
 
Now 
2(t + 1)q(n, t) = n(n − 1) − 4(t2 + t)(n − t − 1) − 2(t + 1) 
 
=  n2− n4nt2 + 4t 3+ 4t2 − 4nt + 4t2 + 4t − 2(t + 1) 
 
= n2− (4t2 + 4t + 1)n + 4t(t + 1)2 − 2(t + 1) 
 
Now consider, 
 
p(4t2 − t − 1, t) = −3t2 + t + 2 < 0 if t > 0 
 

p(4t2  − t, t) = t2 − t ≥ 0 if t > 0 
 
q(4t2 − t, t) = − − 3t2 -3t< 0 if t > 0 
 
q(4t2 + 3t, t) = t2 − t − 2 ≥ 0 if t ≥ 2 
 
Let us denote this set of statement as ∗Λ Now, let t ≥ 
2,differentiating q(x, t) with 
 
respect to x 
 
Dx q(x, t) = 2x − (4t2  + 4t + 1) 
 
Consider 4t2  − t ≤ x ≤ 4t2 + 3t − 1 
 
For x ≥ 4t2− t 
 
Dx q(x, t) = 2( 4t2 − t) − (  4t2+ 4t + 1) 
 
= 8t2  − 2t −  4t2 − 4t − 1 
 
= 4t2  − 6t − 1 
 
≥ 0 
 
(t ≥ 2) 
 
Thus, for x ≥ 4t2  − t we get Dx q(x, t) > 0 
 
Therefore, q(x, t) is increasing function. By Λ, q(4t2+ 3t − 1) 
< 0 
 
Hence q(n, t) < 0 
 
∀n such that  4t2 − t ≤ n ≤  4t2 + 3t − 1 
 
By (2) , 
for such n, h(n, t + 1) < g(n, t) + 1 ..........(3) 
 
So, βt (n) = g(n, t) + 1 ..............(4) 
 
by definition of βt (n) 
  
Now,if t < u <(n-1)/2 ,then g(n, u) + 1 ≥ g(n, t) + 1  (since g 
is increasing.) 
 
> h(n, t + 1)    by 3 
 
≥ h(n, u + 1)(as g is increasing f or y <(x − 1)/2 
and h is decreasing ). 
 Thus, 
        βu(n) ≥  βt(n)   ...............(B) 
 
Now, consider s < t, differentiating p(x, t) with respect to x 
from (1) 
 
 Dxp(x, t) = 2x − ( 4t2 + 1) 
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For x ≥ 4t2  − t 
 
Dx p(x, t) = 2( 4t2 − t) −  4t2 − 1 
 
= 8t2 − 2t − 4t2  −1 
=  4t2 − 2t − 1 
 
> 0   as t≥ 2 
Hence, p(x, t) is increasing. 
 
By Λ, P (  4t2− t, t) ≥ 0 
 
So, P (n, t) ≥ 0 
 
∀ n ≥   4t2− t 
 
Thus by (1) for such n, 
 
[h(n, t)] ≥ g(n, t) + 1 ..............(5) 
 
(as t ≥ 2)2. 
 
Hence, for s < t, we get, 
 
βs(n) ≥[ h(n, s + 1)]≥[ 
h(n, t) 
] (as h is increasing) 
 
≥ g(n, t) + 1 by(5) 
 
= βt (n) 
 
Therefore, if s < t then βs (n) ≥ βt(n) 
..............(A)  
Thus, B(n) = βt(n) = g(n, t) + 
 1 as desired. 
 
By (A) and (B) we get 
 
B(n) = min{βt(m)} 
 
= βt (n) 
 
= g(n, t) + 1 
 
Now,l 
et us consider 4t2  + 3t ≤ n ≤ 4(t + 1)2 − t − 2 
 
We know that, forx ≥   4t2− t, q(x, t) is increasing. 
 
By Λq( 4t2+ 3t, t) > 0 
 
It implies q(n, t) > 0, 
 
for above choice of n 
 
So,by (2) 

 
[h(n, t + 1)]≥ g(n, t) + 1 ..........(6) 
for n ≥  4t2 + 3t 
 
Hence,βt(n) = [h(n, t + 1)] .........(7)  
for n ≥  4t2 + 3t 
 
Now if s < t 
 
βs(n) ≥[ h(n, s + 1) ]≥ [h(n, t + 1)] = βt (n) 
 
For s < t, βs(n) ≤ βt(n) ...........(C) 
 
Consider t + 1 ≤ u < 
(n-1)*2 
 
p(x, t + 1) = x2 − (4(t + 1)2 + 1)x + 4(t + 1)3 + 4(t + 1)2 − 2(t 
+ 1) 
Therefore, 
 
Dx p(x, t + 1) = 2x − 4(t + 1)2  − 1 
 
Dn p(n, t + 1) = 2n − 4(t + 1)2  − 1 
 
If n ≥   4t2+ 3t 
 
Dn p(n, t + 1) = 2( 4t2+ 3t) − 4(t + 1)2  − 1 
 
= 8t2 + 6t −  4t2− 8t − 5 
 
=  4t2− 2t − 5 
 
≥ 0 
  ∀t ≥ 2 
 
Thus, Dnp(n, t + 1) is positive for n ≥  4t2 + 3t 
 
Hence p is increasing for n ≥ 4t2+ 3t. 
 
p(4(t + 1)2 − (t + 1) − 1, t + 1) < 0 
 
p(n, t + 1) < 0 
 
byΛ 
 
∀n ∈ (4t2 + 3t, 4(t + 1)2 − t − 2) 
 
Hence for n in this range, [h(n, t + 1)] ≥ g(n, t + 1) + 1 
  ...........(8) 
 
Thus, 
 
β t (n) = 
[h(n, t + 1) 
]≤ g(n, t + 1) + 1 
 
≤ g(n, u) + 1 
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by(7) and by(8) 
 
(since g is increasing.) 
 
≤ βu (n) 
 
Thus, 
 
βt(n) ≤ βu (n) 
 
for t + 1 < u < 
(n − 1 
)/2 
........(D) 
 
Hence by (C)and(D), βt (n) = min{βt (n)} 
 
Therefore, B(n) = βt (n) = [h(n, t + 1) 
 ]    by(7) 
 
Thus proved. 
 
Theorem. A(n + 2) ≥ A(n) + 2 
 if n > 4. 
 
Proof. Consider an optimal colouring of Kn i.e. with A(n) 
colours. We select a maximal collection of Γ disjoint edges 
of different colours i.e. no colour is repeated in Γ i.e. there 
can be maximum one edge of each colour. But in order to 
collect only disjoint edges, there may not be any edge of a 
colour. But a vertex at which such an  edge is incident is 
present in Γ with some edge of different colour. 
Thus Γ meets every colourclass, Γ is a matching and can 
have maximum n /2 edges since there are n vertices and 
edeges are disjoint. Let st be an edge of Γ . 
 
There are n − 2 more edges incidents at t other than st, and 
these are all of distinct colours being a proper colouring. 
 
Let tu be the edge whose colour does not occur in Γ . 
We collect a maximal set ∆ of disjoint edges coloured with 
colours not used in Γ . tu 
 is one of edge in ∆.Now, we prove that subgraph G 
generated by disjoint Γ ∪ ∆ is 
 bipartite. 
 
 Let there be an odd cycle in G = Γ ∪ ∆, say c = e1  e2  
e3 .. . . e 2n e2n+1  
Let  e1∈ ∆, w.l.o.g. then since ∆ is disjoint edge’s collection 
e2 . which is having one 
 vertex common with e1  can not be in ∆. 
 
Therefore  e2 ∈ Γ . By similar argument e3  ∈ ∆ 
 
and so on . . . 
Thus, e2n ∈ Γ 
 

Therefore, e2n+1 ∈ ∆ but e2n+1  and e1 ∈ ∆ and have a vertex 
in common. 
 
A contradiction to the construction of ∆. 
 
Hence,there is no odd cycle in G, giving G is bipartite. 
 
So,there exist a proper 2 colouring of vertices of G. (i.e. a 
vertex colouring) 
Let vertices in one partition of G be coloured by black and 
vertices in another partition 
 
of G be coloured by white. 
 
Now, we add two nodes b and w in Kn. Let xy be an edge of 
G such that x is black 
 
and y is white. xy either is in Γ or in ∆. 
 
If xy ∈ Γ , we colour edges bx and wy both with the same 
colour as that of xy. If 
 
xy ∈ ∆,we colour edges wx and by both with the same 
colour as that of xy 

 
 
Now consider any vertex of G. Since there are at most two 
edges, one from and one from Γ at each node of G this is 
consistent colouring. See below. 
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Look at y. There is one orange colour edge yb and one red 
color edge yw. (This has become possible to get two 
different colour edges at a common vertex of Γ and is ∆ due 
to bipartition) The edges through y, orange and red inside 
Γ and ∆ are going to be of some different colours later on. 
More over, since all the colours in Γ ∪ ∆ are different, no 
colour appears twice at either b or w. 
Now, we erase the old colours on the edges of Γ and make Γ 
a new colourclass using colour other than used A(n) 
colours. Note here that for any edge xy ∈ Γ .Also, bx 
 
and wy are of same old colour. x and y still belong in the 
support of old coloursclass. 
Infact b and w also are in the support of old colourclass in 
this new colouring. 
Now, erase the old colours on the edges of ∆ and make ∆ ( 
Λ) = ∆ ∪ {bw} a new colourclass i.e. other than used ∆(n) + 
1 colours. Similar arguments hold true even for each each 
xy ∈ ∆ Thus, this new colouring with A(n) + 2 colours is a 
proper colouring. Since the supports of old colours are 
either left the same or enlarged by b and w, it follows that 
any two old colourclasses still meet. Also, Γ meets every 
old colour. Therfore, (A(n) + 1)st colour meets every 
colourclass. ∆( Λ )meets every old colour not appering on 
an edge in Γ . bw is coloured in (A(n) + 2)th  colour. Hence  
(A(n) + 2)th  meets every  old colour,as bw meets all 
colours and (A(n) + 1)st (A(n) + 2)th  colours meet on the 
special edges st and tu. Thus colouring is complete. 
But this is a colouring of G, a subgraph of Kn+2  , Thus, If 
Ψ(G) ≥ A(n) + 2 then Ψ(L(K n+2 )) = A(n + 2) ≥ A(n) + 2 
Therefore, A(n + 2) ≥ A(n) + 2. 
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