
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1938

The LINQ between XML and Database

Surbhi Jain

Assistant Professor, Department of Computer Science, India
---***---

Abstract - LINQ (Language Integrated Query, pronounced
“link”) is a data choice mechanism designed to provide
programs the flexibility to pick data within
the same approach from any information supply. The
Language Integrated Query provides a unified paradigm for
querying relations and XML. Ideally the program would be
able to use exactly the same method to fetch data whether it’s
stored in arrays, lists, relational databases, XML data, Excel
worksheets, or some other data store. In this paper, we'll
explore, in brief, the usage of LINQ with XML and with SQL
databases. And also describes a suite of code for using LINQ to
query a relational database returning XML results, to query
XML, and to transform the structure of one XML document to
another.

Key Words: LINQ, LINQ tools, XML, System.Xml,
XElement

1. INTRODUCTION

Software is simple. It boils down to two things: code and
data. Writing software is not so simple, and one of the major
activities it involves is programming code to deal with data.
Whatever the language we end up with, at some point we
will have to deal with data. This data can be in files on the
disk, tables in a database, XML documents coming from the
Web, and very often we have to deal with a combination of
all of these. Ultimately, managing data is a requirement for
every software project we work on.
Given that dealing with data is such a common task for
developers, one would expect rich software development
platforms like the .NET Framework to provide easy means
for this. NET does provide wide support for working with
data. We will see however that something is yet to be
achieved: deeper language and data integration. This is
where LINQ to Objects, LINQ to XML and LINQ to SQL fit in.
LINQ tools are divided into the three categories summarized
in the following list:

LINQ to Objects refers to LINQ functions that interact with
Visual Basic objects such as arrays, dictionaries, and lists.

LINQ to XML refers to LINQ features that read and write XML
data. Using LINQ, we can easily exchange data between XML
ladders and other Visual Basic objects.

LINQ to ADO.NET refers to LINQ features that let us write
LINQ - style queries to extract data from relational
databases.

1.1. LINQ Syntax

LINQ's syntax is declarative, using from-where-select
clauses. The from clause iterates over collections (of tuples
or XML elements), the where clause filters select clause
specifies the structure of the returned result.

The execution order of the clauses is based on the underlying
formalism of functional programming. As an example query,
consider the following LINQ expression that returns the
names of employees who are database administrators,
where employees is a collection of employee tuples
[employee(eID, eLast, eFirst, eTitle, eSalary)] and the result
is a collection of strings representing employee names:

var dbas = from e in employees
where e.eTitle == "Database administrator"
select e.eLast + ", " + e.eFirst;

When we represent information in the form of real word
objects as in the case of object- oriented programming, the
database model is known as an Object database (also called
object-oriented database)

To access a specific kind of data source, something called a
provider is employed. Providers primarily gives a link
between LINQ and the appropriate data source. Knowledge
of the provider was, of course, unnecessary to the task..NET
also comes with other providers, such as LINQ to XML and
LINQ to SQL, which we'll be using in this article, and it's
possible to create providers; a number of third party
providers are available.

For instance, while writing an application using .NET,
probability is high that at some point there is a need to
persist objects to a database, query the database and load
the results back into objects. The problematic thing is that in
most cases (at least with relational databases), there is a gap
between the programming language and the database. Good
attempts have been made to provide object-oriented
databases, which would be closer to object-oriented
platforms and vital programming languages like C# and
VB.NET. However, after all these years, relational databases
are still prevalent and we still have to struggle with data-
access and persistence in all programs.

In due course of time, LINQ grew into a general-purpose
language-integrated querying toolset, which can be used to
access data coming from in-memory objects (LINQ to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1939

Objects), databases (LINQ to SQL), XML documents (LINQ to
XML), a file-system, or from any other source.

2. Basic need of LINQ

 One of the key aspects of LINQ is that it was designed to

be used against any type of objects or data Source, and
provide a consistent programming model for doing this.
LINQ ships with implementations that support querying
against regular object collections, databases, entities,
and XML sources. Developers can integrate LINQ and
other data sources with ease due to its support of rich
extensibility.

 Another vital side of LINQ is that once we use it, we
work in a strongly-typed world. All the queries are
checked at the compile time. Unlike SQL statements,
where we only find out after execution, if something is
wrong. This means validity of code can only be detected
during development. Most of the time problems come
from human factors. Strongly-typed queries allow
detecting early typos and mistakes done by the
developer of the keyboard.

 LINQ is a step toward a more declarative software
design.

 There is duality in LINQ. We can perceive LINQ as two
balancing things: a set of tools that work with data, and
a set of programming language extensions.

 Lot of time is spent on writing plumbing code. Removing
this burden would increase the productivity in data-
intensive programming, which LINQ helps us do.

2.1 Object-relational mapping

If we take the object-oriented paradigm and the relational
paradigm, the mismatch exists at several levels.
Let’s just name a few.

- Relational databases and object-oriented languages don’t
share the same set of primitive data types. OOP and
relational theories come with different data models. For
performance reasons and due to their intrinsic nature,
relational databases need to be normalized.

Fig.1 Here is how we could represent the LINQ building
blocks and toolset in a diagram

-Programming models: In SQL, we write queries, and so we
have a higher-level declarative way of stating the set of data
that we are interested in. With general purpose vital
programming languages like C# or VB.NET, we have to write
iterative statements (for loops) and decision statements (if
statements and so forth).

-Encapsulation: Objects include data as well as behavior.
They are self-contained. In databases, data records don’t
have behavior.
A descriptive explanation for bridging object-oriented
languages and relational databases is object-relational
mapping which is provided by LINQ

2.2 Object-XML mapping

The mismatch which is there between object-relational
databases, a similar mismatch also exists between objects
and XML. For example, the type system part of the W3C XML
Schema specification has no one-to-one correspondence
with the type system of the .NET Framework. Because of the
presence of APIs, using XML in a .NET application is not very
problematic. We have APIs that deal with this under the
System.Xml namespace and built-in support for object
to/from XML serialization and deserialization. Even after
these, a lot of difficulties are faced for doing even simple
things on XML documents.
Given that XML has become so pervasive in the modern
software world, something had to be done to reduce the
work required to deal with XML in programming languages.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1940

Fig. 2 .NET applications and data sources are different
worlds. The concepts used in object-oriented

programming are different from the concepts used with
relational databases and XML.

2.3 LINQ to OBJECTS

The methods that enable a program to fetch data from
objects extended by LINQ extension methods are referred to
as LINQ to object methods. These methods extend IE
numerable(Of T) so that they relate to any class that
implements IE numerable(Of T) including Dictionary(Of T),
Hash Set(Of T), LinkedList(Of T), Queue(Of T), Sorted
Dictionary(Of T), Sorted List(Of T), Stack(Of T), and others.

For example, the following code searches the
employees_master list for employees with account balances
less than 100. It orders them by account balance and returns
their names and balances.

Dim overdue_emp =
From emp In employees_master
Where emp.AccountBalance < 100
Order By emp.AccountBalance Ascending
Select emp.Name, emp.AccountBalance

This query will result in an IEnumerable object that the
program can repeat through to take action for the selected
employees.

2.4 LINQ to XML: Querying XML documents

A new insight to represent and work with XML is given by
LINQ to XML. For demonstrating the novel API provided by
LINQ to XML, we first need to build the XML document. We
will have to import the System.Xml.Linq namespace to get
started. This namespace provides a variety of classes, of
which we will use a few. XDocument: This class signifies an
XML document. Our entire document above can be contained
within an XDocument class. XDeclaration: This class contain
the first line of our document – the XML declaration.
XElement: This class signifies an element. The body of our
document can be represented by nesting XElement objects.

XML querying capabilities can be incorporated into host
programming languages with the help of LINQ to XML, a

member of the LINQ family of technologies. It takes
advantage of the LINQ framework and adds query extensions
specific to XML. The query and the transformation power of
XQuery and XPath integrated into .NET is what is provided
by LINQ to XML.

Why we need LINQ to XML

XML is globally used in programs written using all-purpose
programming languages like C# or VB.NET. It is used to
exchange data between applications, to store configuration
information, to persist temporary data, as a base for
generating web pages or reports, and for many other things.
It is everywhere.

Until now, XML hasn’t been natively supported by the
programming languages, which required using APIs to deal
with XML data. These APIs include XmlDocument,XmlReader,
XPathNavigator, XslTransform for XSLT, and SAX and XQuery
implementations. It offers the expressive power of XPath and
XQuery but with C# or VB as the programming language and
with type safety and IntelliSense. While working on XML
documents with .NET, we use the XML DOM (Document
Object Model) available through the System.Xml namespace.
These classes contained in the System.Xml.Linq namespace
correspond to the classes in the System.Xml namespace. The
names of the new classes begin with “ X ” instead of “ Xml. ”
For example, for the System.Xml class XmlElement the LINQ
class will be XElement.

The new System.Xml.Linq classes provide new LINQ -
oriented features along with the features similar to those
provided by the System.Xml classes. One of the most visible
of those features is the ability to use XML literal values. For
example, the following code creates an XDocument object
that contains three Employees elements:

Dim xml_literal As XElement = _
< AllEmployees >
< Employee FirstName="Joe" LastName="Ben" > 100.00 < /
Employee >
< Employee FirstName="Mary" LastName="Best" > -24.54 < /
Employee >
< Employee FirstName="John" LastName="Arthur" > 62.40 < /
Employee >
< /AllEmployees >

code snippet EmployeesToXml

VB LINQ translates this literal into an XML object hierarchy
holding a root element named AllEmployees that in it
contains three Employee elements. Each Employee element
has two attributes, FirstName and LastName.
LINQ to XML leverages the experience with the DOM to
improve the developer toolset and avoid the limitations of
the DOM.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1941

Let’s compare the characteristics of LINQ to XML with the
ones of the XML DOM:

S.No. LINQ to XML
characteristics

XML DOM
characteristics

1 Element-centric Document-
centric

2 Declarative
model

Imperative
model

3 Language
integrated
queries

Not integrated
queries

4 Simplified XML
namespace
support

Requires
dealing with
prefixes and
“namespace
managers”

5 Faster and
smaller

Heavy weight
and memory
intensive

6 Streaming
capabilities

Everything is
loaded in
memory

In our first LINQ to XML example, we want to filter and save
a set of Book objects as XML. Here is how
class Book
{
 public string Publisher;
 public string Title;
 public int Year;
 public Book(string title, string publisher, int year)
 {
 Title = title;
 Publisher = publisher;
 Year = year;
 }
}
Let say we have the following collection of books:
Book[] books = new Book[] {
new Book("Ajax in Action", "Manning", 2015),
new Book("Windows Forms in Action", "Manning", 2016),
new Book("ASP.NET 2.0 Web Parts in Action", "Manning",
2016)
};
Here is the result we would like to get if we ask for the books
published in 2016:
<books>
<book title="Windows Forms in Action">
<publisher>Manning</publisher>
</book>
<book title="ASP.NET 2.0 Web Parts in Action">
<publisher>Manning</publisher>
</book>
</books>

Using LINQ to XML, this can be done with the following code:
XElement xml = new XElement("books",
from book in books
where book.Year == 2016
select new XElement("book",
new XAttribute("title", book.Title),
new XElement("publisher", book.Publisher)
));

LINQ can also query collections of XML elements, known as
LINQ to XML. The XElement type has methods to assist in the
navigation of XML. Initially, the XML data is loaded into main
memory using the Load method, assigning the XML
document to a variable of type XElement:
XElement db = XElement.Load(@"employees.xml");

The XElement type has a robust public interface with many
methods.

Elements returns immediate children and Descendants
returns all descendants of the node. There are also versions
of these methods that accept a parameter, returning only the
elements or descendants that correspond to the name of the
parameter. There are Element and Attribute methods to
access a named element or attribute of the node. A Value
property accesses the value of an element or attribute.
Consider an element-based representation of the employee
table as XML with each column in the table corresponding to
an element in XML, with a distinguished root element
employees and each tuple contained in an employee
element. The following query that returns the database
administrators over the XML data illustrates the use of the
methods provided by the XElement type. The changes to the
query from its relational version are marked in bold:

var dbasXML = new XElement("dbas",
from e in db.Descendants("employee")
where e.Element("eTitle").Value == "Database
Administrator"
select new XElement("dba",
new XAttribute("eID", e.Element("eID").Value),
e.Element("eLast").Value + ", " +
e.Element("eFirst").Value));

Transforming XML

XML provides a worldwide solution for switching data. For
facilitating this exchange of data, many times XML data
needs to be transformed from one XML format to another.
The language for this transformation is provided by the
industry standard XSLT. XSLT requires the knowledge of
XPath and its paradigm which is usually not known to novice
users. A better solution to this transformation is LINQ as it
can query XML and also can return results in XML format.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1942

 Sample code that uses LINQ to query a database and
create and XML document

// Retrieve customers from a database
var contacts =
from customer in db.Customers
where customer.Name.StartsWith("S") &&
customer.Orders.Count > 5
orderby customer.Name
select new { customer.Name, customer.Phone };

// Generate XML data from the list of customers
var xml =
new XElement("contacts",
from contact in contacts
select new XElement("contact",
new XAttribute("name", contact.Name),
new XAttribute("phone", contact.Phone)
));

2.5 LINQ TO ADO.NET

DLinq, more popularly known as LINQ to ADO.NET, provides
tools that let the applications implement LINQ - style queries
to objects used by ADO.NET for storing and interacting with
relational data.
LINQ to ADO.NET have three main components, namely
LINQ to SQL, LINQ to Entities, and LINQ to DataSet.

2.5.1 LINQ to SQL and LINQ to Entities

LINQ to SQL and LINQ to Entities are object - relational
mapping (O/RM) tools that build strongly typed classes for
modeling databases. They generate classes to represent the
database and the tables that it contains. LINQ features
provided by these classes allow a program to query the
database model objects. For example, to build a database
model for use by LINQ to SQL, select the Project menu’s Add
New Item command and add a new “ LINQ to SQL Classes ”
item to the project. This opens a designer where we can
define the database’s structure. Now we can drag SQL Server
database objects from the Server Explorer to build the
database model. If we drag all of the database’s tables onto
the designer, we will be able to see all of the tables and their
fields, primary keys, relationships, and other structural
information.

Querying relational Databases

LINQ to SQL needs to map information which it uses either
from information encoded in .NET custom attributes or
contained in an XML document. This information is used to
automatically handle the persistence of objects in relational
databases. A table can be mapped to a class, the table’s
columns to properties of the class, and relationships
between tables can be represented by behavior. LINQ does
not replace SQL but works with the SQL industry standard.

Specifically, LINQ queries over relational data sources are
automatically converted to SQL by the underlying
framework and sent to the database for the result.

The DataContext

The next thing we need to prepare before being able to use
language-integrated queries is a
System.Data.Linq.DataContext object. To translate requests
for objects into SQL queries made against the database and
then assemble objects out of the results is the work of

DataContext.
string dbPath =
Path.GetFullPath(@"..\..\..\..\Data\northwind.mdf");
DataContext db = new dataContext(dbPath);

The constructor of the DataContext class takes a connection
string as a parameter.

The DataContext provides access to the tables in the
database. Here is how to get access to the Contacts table
mapped to our Contact class:

Table<Contact> contacts = db.GetTable<Contact>();
DataContext.GetTable is a generic method, which allows
working with strongly-typed objects. This is what will allow
us to use a LINQ query.
LINQ to SQL automatically keeps track of changes on objects
and updates the database accordingly through dynamic SQL
queries or stored procedures. This is why we don’t have to
provide the SQL queries every time on our own.

The following C# code snippet filters an in-memory
collection of names based on their ages:
from name in contacts
where name.Age >= 30
select name;
Using LINQ to SQL, performing the same query on data
coming from a relational database is direct:
from name in db.GetTable<Contact>()
where name.Age >= 30
select name;

This query works on a list of contacts from a database.
Notice how refined the difference is between the two
queries. In fact, only the object on which we are working is
different, the query syntax is exactly the same.
What has been done automatically for us by LINQ to SQL?

 Opening a connection to the database
 Generating the SQL query
 Executing the SQL query against the database
 Creating and filled our objects out of the tabular

results

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1943

Using LINQ Results

A LINQ query expression returns an IEnumerable containing
the query’s results. A program can iterate through this result
and process the items that it contains.
To determine what objects are contained in the IEnumerable
result, we need to look carefully at the Select clause. If this
clause chooses a simple value such as a string or integer,
then the result contains those simple values only. For
example, the following query selects customer’s first and last
names concatenated into a single string. The result is a
string, so the query’s IEnumerable result contains strings
and the “For Each” loop treats them as strings.

Dim query = From cust In all_customers
Select cust.FirstName & " " & cust.LastName
For Each cust_name As String In query
Debug.WriteLine(cust_name)
Next cust_name

But the Select clause usually chooses some kind of object.
For example, the following query selects the Customer
objects contained in the all_customers list. The result will
contain Customer objects, so the code can explicitly type its
looping variable and treat it as a Customer.

Dim query = From cust In all_customers
Select cust
For Each cust As Customer In query
Debug.WriteLine(cust.LastName & " owes " &
cust.AccountBalance)
Next cust

2.5.2 LINQ to DataSet

LINQ to DataSet lets a program use LINQ - style queries to
select data from DataSet objects. A DataSet contains an in -
memory representation of data contained in tables. A
DataSet represents data in a more concrete format than is
used by the object models used in LINQ to SQL and LINQ to
Entities. DataSets are useful as they make lesser assumptions
about how the data will be loaded. A DataSet can hold data
and provide querying capabilities irrespective of the fact
whether the data is loaded from SQL Server, by the
program’s code or using some other relational database.
However, The DataSet object does not provide us with many
LINQ features within it. It is useful because it holds
DataTable objects that represent groupings of items.
LINQ eliminates many hurdles between objects, databases
and XML. It enables us to work with all these paradigms
using the same language-integrated facilities. For example,
we are able to work with XML data and data coming from a
relational database within the same query.
Here is an example code sample using the power of LINQ to
retrieve data from a database and create an XML document
in a single query.

Working with relational data and XML in the same query

var database = new RssDB("server=localhost; initial
catalog=RssDB");
XElement rss = new XElement("rss",
new XAttribute("version", "2.0"),
new XElement("channel"),
new XElement("title", "LINQ in Action RSS
Feed"),newXElement("link", "http://LinqInAction.net"),
new XElement("description", "The RSS feed for this book"),
from post in database.Posts
orderby post.CreationDate descending
select new XElement("item",
new XElement("title", post.Title),
new XElement("link", "posts.aspx?id="+post.ID),
new XElement("description", post.Description),
from category in post.Categories
select new XElement("category", category.Description)
)));

3. FUTURE SCOPE

LINQ is a powerful tool in the .NET developer's toolbox. It
integrates data access directly into .NET languages,
providing a very readable query language that can be used
on a variety of data sources. In this paper, we covered
objects, XML files and databases, but LINQ supports other
data sources too, that we may want to look into. LINQ is
limited to:

 SQL server at backend.
 Requires at least .net 3.5 version to run
 Somewhat limited in that tables are mapped strictly on a

1:1 basis (one table = one class)

The LINQ to SQL code generator does not support stored
procedures that use dynamic SQL to return result sets. This
is because, when a stored procedure containing conditional
logic to build a dynamic SQL statement is called, LINQ to SQL
cannot acquire metadata for the resultset as the query used
to generate the resultset is not known until run time. Also,
the stored procedures that produce results based on
temporary tables are not supported.

4. DISCUSSION AND CONCLUSIONS

When we look at these domains, we get to know how
different they are. The main source of contention relates to
the fact that:
 Relational databases are based on relation algebra and

are all about tables, rows, columns, queries, etc.
 XML is all about text, angle brackets, elements,

attributes, hierarchical structures, etc.
 Object-oriented general-purpose programming

languages and the .NET Framework CLR live in a world
of classes, methods, properties, inheritance, etc.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1944

Depending on which form of LINQ we are using, the
development environment may provide strong type checking
and IntelliSense support. LINQ provides the ability to
perform SQL - like queries within Visual Basic.

LINQ to Objects allows a program to query arrays, lists, and
other objects that implement the IEnumerable interface.
LINQ to XML and the new LINQ XML classes allow a program
to extract data from XML objects and to use LINQ to generate
XML hierarchies.

LINQ to ADO.NET (which includes LINQ to SQL, LINQ to
Entities, and LINQ to Dataset) allow a program to perform
queries on objects representing data in a relational database.
Together these LINQ tools allow a program to select data in
powerful new ways.

5. REFERENCES

[1] Marco Russo, Paolo Pialorsi, “Programming Microsoft
LINQ”, May 2008
[2] Jennifer Hawkins, “Linq: for starters”, 2016
[3]
http://www.manning.com/marguerie/marguerie_meapch1.
pdf
[4] Ben Albahari, Joseph Albahari, “C# 6.0 in a Nutshell”, 6th
Edition
[5] http://www.aspfree.com/c/a/.Net/Introducing-LINQ-
with-XML-and-database

