
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1679

 A Framework for Automated Assessment of Changeability and
Reusability

Isha Rani1,Pinki Tanwar2

1Student, dept. of c.s.e, JMIT,Kurukshetra Univesity,Radaur,India
2Assistant professor, dept. of c.s.e, JMIT,Kurukshetra Univesity,Radaur,India

--***---
ABSTRACT-Software reuse is the method of implementing
or updating software systems using accessible software
components. A good software reuse procedure facilitates
the increase of productivity, reliability and quality. the
diminish of costs and implementation time. There is an
urgent need to understand how these software
components can be implemented as plug and play devices
and changeability of software components can be
understand in some tangible framework. Therefore, in this
research work we are solving this issue by building a
framework which helps to measure degree of reusability
by using clustering methods (machine learning).

Keywords: Component, software component, software
development with reuse, properties of software metrices
, k means++ algorithm.

1. INTRODUCTION

1.1 COMPONENT- Components are the gathering of
numerous pre programmed tools which are used as the
add-on page which is to make use of those tools. There
are a variety of tools accessible to calculate the Java
source code. Those tools are developed a number of
tools will calculate some parameters to be measured in
java program. Initially the tools which are used to
determine the java object oriented programs are
searched and analyzed individually to make it as a
component. The component based tools will be execute
independently but available in a same position and some
tools will offer a chart for the results when the program
is executed.[1]

1.2 SOFTWARE COMPONENT

Software Component is a cover up of software
implementations which define well clear interfaces.
Software components can be a portion of code, function,
unit or class, scheme or software itself and when these
components get included they form an whole application
.[2]
Some basic properties of the software components
are:[1]
A software component can be a code block, module,
function, class, control or the project or software itself.A
software component can be end product or it can be

extendable. The software component can be language
dependent or language independent.A software
component is the unit of interfacing that conceptually
specifies it’s internal and the external interfacing with
main application.A software component can be online or
the offline product or code. A software component can
also be a deliverable software object
As a software component is not an individual expression
it is the essential concept that gives the software
reusability in some way. several kind of inner or
interfacing in software in the form of individual
components are represented in the form of software
components. Each of the software language describes
most of software components in dissimilar way. [1]

Fig1: Software Components

Software Reusability -Software reuse is the method of
implementing or updating software systems using
accessible software components. A good software reuse
procedure facilitates the increase of productivity,
reliability and quality. the diminish of costs and
implementation time. An initial investment is required to
create a software reuse process, but that speculation
pays for itself in a few reuses .In short, the development
of a reuse process and repository manufacture a base of
knowledge that pick up in quality behind every reuse,
minimize the sum of development work required for
future projects, and ultimately reducing the risk of new
projects that are based on warehouse knowledge .[1]

Why Reuse?
Reuse has been established to offer many rewards. When
we reuse code, components and other artifacts, our
objective are to :

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1680

 Reduce the cost of developing the product
 Reduce time to market..
 Improve the predictability of the development

process
 Improve the productivity of the development teams.
 Increase the quality and reliability of the product
 When reuse is mentioned, we often consider only of

code reuse.

Software development with reuse: Software
development with reuse is an method which tries to
exploit the reuse of existing software components.
advantage of this approach is that overall development
costs of the software are reduced . Cost reduction is only
one potential profit of software reuse. Systematic reuse
the development offers for further advantages:

 System reliability is increased: Reused components

in working systems must be more dependable than
new components. These components have been
tested in diversity of operational systems
environment and have therefore been uncovered to
realistic operating conditions.

 Overall process risk is reduced: If we use a function
which is by now exists, there is less doubt in the cost
of reusing that in the cost of development. For
project management this is essential factor as it
reduce insecurity in project cost exclusion. If
relatively huge components such as sub systems are
reused then this become true.

 Effective use defined by specialists: Application
specialists doing the same work on diverse project
environment instead these specialists can build up
reusable components which encapsulate their
knowledge.

 Organizational standards can be embodies in
reusable components: We can reuse a number of
standards such as user interface standard which can
be executed as a set of standard components.

Software reuse is the method of implementing or update
software systems using existing software resources. A
good software reuse procedure facilitates the increase of
quality productivity and reliability, and the development
of costs and implementation time. An original
investment is required to start a software reuse process,
but that investment pays for itself in a few reuses.[1]

METRICS - Software metrics are used to calculate the
software quality to ensure its requirements. Metrics are
described as “Quantifiable measures that could be used
to calculate characteristics of a software system or the
software development method.” Software metrics are
necessary to plan, monitor, predict, control, evaluate,
products and processes. The main aim of the software

metrics is to reduce costs, Control /Monitor schedule, it
prove quality small testing effort, many reusable
fragments, to better recognize the quality of the product
and the program.[3]

METRICS CATEGORIZATION–Metrics can be classify
into three Kinds, measures and size.
Two types of software metrics they can be Product
metrics: quantify characteristics of the product being
developed to calculate the, reliability, size and Process
metrics: quantify characteristics of the development
being used to develop the software to approximation the
efficiency of fault detection.
Types of methods are Direct Measures (internal
attributes):
 To calculate the Cost, effort, speed , LOC ,memory and
Indirect Measures (external attributes): to calculate the
Functionality, complexity, quality, reliability, efficiency,
maintainability.
Size-oriented metrics are KLOC - 1000 Lines Of Code,
LOC -Lines Of Code, LOC – Statement Lines of Code
(ignore whitespace).[3]

PROPERTIES OF A SOFTWARE COMPLEXITY METRIC
- A software complexity metric is applicable if it succeeds
in fulfilling defined properties. numerous researchers
have tried to explain a set of properties that a good
software complexity metric should satisfy.
Property 1: Nonnegativity: A complexity metric value
can not be in a negative number. For a few complexity
metrics it is essential to be even stricter, since a value of
zero will not for all time be accepted. Interpretation
guidelines: The importance of a complexity metric
worth for a software manufactured article that provides
some functionality to be identical to zero is that the
artifact is the least-complex probable design that can
provide that functionality. A lower complexity value, for
two functionally identical designs, is preferred over a
superior value since lower complexity is believed to be
connected with less development, testing, and
maintenance efforts.

Property 2: Scalability: A software complexity metric
should offer a scale of values. Comparison among
diverse alternatives should be possible. For any two
software artifacts it should be possible to evaluate and
then make managerial decision according to the metrics
values. For any two functionally-identical components
C1 and C2, if Complexity(C1) > Complexity(C2) then C2 is
preferred over C1 assuming that keep all other
parameters constant. This is due to the reality that C2
will need, less integration, less testing and less
maintenance efforts. Also, metrics must offer enough
information to help managers make business decisions
and compare diverse alternatives.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1681

Property 3: The complexity of single software unit S
collected of two software components may not be less
than the calculation of the complexities of the individual
components.
 Complexity(S) >= Complexity(C1) + Complexity(C2)
According to the metrics explaind in , the complexity of a
component oriented software system is a function of the
complexities of individual components that formulate it
up, and an added complexity will appear as a result of
new connections that may exist among the components.
In the best case, when a system is composed of two
components and no new added interactions among the
components are available, the system’s complexity will
be same to the sum of the individual component
complexities.

Property 4: If a component C is decomposed into two or
more components C1, C2, .., Cn then the sum of
complexities of the resulting components is no extra
than the overall complexity of the original component.
Complexity(C1) + Complexity(C2) + … + Complexity(Cn)
<= Complexity(C). The motive for this is that, according
to observation of the three-level component-oriented
software complexity, there is usually an added
complexity whenever two components are composed.
The complexity usually results from the communications
amid these components. So, when the component is
decomposed these relations will disappear and only the
component’s intrinsic complexity will remain.

Property 5: The complexity value of one component
does not have a straight relation to its functionality for
any two components C1 and C2, if Complexity(C1) >
Complexity(C2) then it is not essential that C1 provides
more functionality than C2. The same functionality can
be obtained by dissimilar designs and then
implementation. The complexity procedures described
in this article are those that allow software developers
and/or managers to take decisions and
contrast/compare diverse alternative solutions to the
same difficulty. Of course, any added functionality may
initiate an added complexity. So, a complexity metric
does not believe evaluating functionality of the system or
offer any information about the system size.

Property 6: The complexity value is openly influenced
by structure. Two dissimilar structures for the same
functionality can result in two dissimilar complexity
values. A complexity measure of the system can have
diverse values for dissimilar alternative architectures of
the same functionality.[4]

COMPONENT GENERAL METRICS

Some of the significant metrics applicable for the
examination of components quality in design stage are:

 Inferences from the LCOM metric: A high value for
the LCOM metric implies that there usability of that
component is high and the component is relatively
less complex

 Inferences from the WMC metric: if value of the
WMC is more, reusability is considered low.

 Inferences from the NOC metric: A high value for the
NOC metric implies that the component is highly
reusable

 Inferences from the DIT metric: If the value of DIT is
high, reusability is high and complexity is high

 Inferences from the CPD Metric: From the
theoretical analysis, if a high value for the CPD
metric implies that the reusability decreases[2]

K-MEANS ++ ALGORITHM- K-means clustering
algorithm is responsive to the initial value, namely
dissimilar initial values may lead to dissimilar clustering
results . expected at the deficiency of K-means algorithm,
K-means++ algorithm is proposed. beginning the input
data sets, this algorithm firstly randomly choose a point
as the first initial clustering center, then according to the
D2 weighting technique to decide the next point as the
initial clustering center, until you decide K initial
clustering centers. The algorithm can choose widely
distributed initial cluster centers, and get enhanced
clustering results K-means clustering algorithm is
responsive to the initial value, namely dissimilar initial
values may lead to dissimilar clustering results . [5]

The idea of K-means++ algorithm- K-means algorithm
is firstly to randomly choose K sample spot as the K
initial cluster centers from the clustered data sets. Then
it analyze the distance the rest of the sample spot
respectively to K initial clustering centers, select the
nearest sample, and then allocate it to the corresponding
cluster, and the cluster center iterative bring up to date
until it satisfies the least squared error function or does
not alter until the cluster center. And the K-means++
clustering algorithm is to improve the defect of
instability brought by the K-means algorithm randomly
choose initial cluster centers. The work of K-means++
algorithm is reflected in the choice of the initial cluster
centers, the essential principle is to make the distance
among the initial centers as large as possible .
The basic steps of the algorithm are as follows:

1) From the input data sets we randomly choose a
sample point as the first original clustering center.
2) For each sample spot of the remaining data collection,
it will measure the distance to the nearest cluster center
point D2 (x) and the D2(x) is stored in an array, and then
add up these distances Sum (D 2(x)).
 3) Then, referring to Sum(D2(x)), randomly choose a
random value, weight to compute the next initial
clustering centers. The algorithm implementation is,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1682

take a fall in the Sum (D2(x)) the Random values in the
Random, and then use the Random -= D 2(x), until it <=
0, this point is the initial clustering center.
4) Repeat 2), 3) until the K initial cluster centers are
selected.
5) The input K initial clustering center, like as the input
of K-means algorithm.[5]

2. RELATED WORK

The research work performed in this field by many
researchers and the work is presented as follows:
Nael Salman et al (2006)[4]The work presented in this
paper introduce a set of metrics for component oriented
software systems. it focuses mainly on the complexity
that results mainly from factors connected to system
structure and connectivity. Also, a set of properties that
a component-oriented complexity metric should possess
are defined. The metrics have been evaluated using the
properties clear in this paper.

K. A. Abdul Nazeer et al(2009)[6]-appearance of
modern technique for scientific data gathering has
resulted in large scale accumulation of data pertaining to
different fields. Conventional database querying
techniques are inadequate to take out useful information
from huge data banks. Cluster examination is one of the
major data analysis technique and the k-means
clustering algorithm is widely used for several practical
applications. But the original k-means algorithm is
computationally exclusive and the quality of the
resulting clusters heavily depends on the selection of
initial centroids. some methods have been proposed in
the literature for improving the presentation of the k-
means clustering algorithm. This paper proposes a
system for making the algorithm more effectual and
efficient, so as to get better clustering with decrease
complexity.

Gholam Reza Shahmohammadi et al(2010)[7]The
selection of software architecture style is an significant
result of design stage, and has a significant impact on
different system quality attributes. To establish software
architecture based on architectural style selection, the
software functionalities have to be distributed amid the
components of software architecture. In this paper, a
technique based on the clustering of use cases is
proposed to find out software components and their
responsibilities. To choose a proper clustering method,
first the proposed technique is performed on a number
of software systems using dissimilar clustering methods,
and the results are established by expert opinion, and
the best scheme is recommended. By sensitivity analysis,
the outcome of features on accuracy of clustering is
evaluated. Finally, to decide the appropriate number of
clusters (i.e. the number of software components),
metrics of the internal cohesion of clusters and the

coupling amid them are used. Advantages of the
proposed technique include; 1) no need for weighting
the features, 2) sensitivity investigation of the effect of
features on clustering accuracy, and 3) presentation of a
clear method to recognize software components and
their responsibilities.

Jianguo Chen et al(2011)[8]In latest years, the
software engineering community has put considerable
attempts into the design and development of
component-based software system (CBSS) in order to
handle the software increasing complexity and to exploit
the reuse of code. This paper presents diverse of such
efforts by investigating the improved measurement tools
and method, i.e., through the useful software metrics.
Upon the research on the classical valuation measures
for software systems, the author argue the traditional
metrics are not appropriate for CBSS. Therefore author
present an account of novel software measures for
component by adequate cohesion, coupling and interface
metrics. The complexity metrics merge with three
metrics on the CBSS level is also investigated. The
advantages of author’s methods are discussed as well
during a case study in this paper

Prakriti Trivedi et al (2012)[1]Today the majority of
the applications residential using a number of codes,
existing libraries, open sources etc. As a strategy is
accessed in course, it is represented as the software
module Such as in .net ActiveX controls and java beans
are the software mechanism. These components are
complete to use programming rules or controls that
excel the system growth. A component based software
organization defines the perception of software
reusability. While by means of these mechanism the
main question occur is whether to use such components
is helpful or not. In this planned work we are tiresome to
present the reply for the similar question. In this
occupation we are presenting a position of software
matrix that will verify the interconnection among the
software element and the application. How well-built
this relative defines the software value after using this
software part. The generally metrics will revisit the final
product in terms of the unlimited of the part with
application.

Divya Chaudhary et al(2013)[9]Component based
software engineering is one of the main advancement in
the ground of software engineering. It is a process that
highlight the design and construction of computer based
systems using reusable software components. It offers
the methodology of developing a large software systems.
It carry both the Commercial-off-the-shelf and in-house
components. This paper talk about the component based
software engineering fundamentals. It also emphasizes
the process involved. This paper surveys the different
current metrics for component based software

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1683

engineering systems namely for cost, complexity etc. in
detail. The metrics help in enhance the quality and risk
management in the component based system.

Suchita Yadav et al(2014)[10]In Component-Based
Software Engineering (CBSE), it is essential to calculate
the reusability of components in order to understand the
reuse of components effectively because reusability is an
efficient way to recover productivity in CBSD; it is
required to calculate the reusability of components. This
study will suggest a modified reusability metrics suite
and reusability assessment model by using reuse,
complexity and adaptability factors. while the
complexity of a software component decide that how
easy it is to get used to the component in the new
context of use, Reuse of the component can also be used
to deduce how usable and how easy to adapt it,
adaptability define that how easy it is to adapt a
component to the context of the developer.

Muhammad Husnain Zafar et al(2015)[11]Software
reuse is the procedure of implementing or updating
software systems using accessible software components.
A good software reuse process facilitates the raise of
quality, productivity and reliability. It reduce the cost
and implementation time as compared to build up new
system. even with its many benefits the author cannot
achieve its full benefits. The cause behind this is that
software reuse is often done in an relaxed and
haphazard way. If done systematically, then author can
achieve its full benefits. This research proposes a
technique through which author will classify the
reusable components in proper way to get the full
benefits of reusability. The author define the reusable
components according to their clusters. Clusters can be
made on the source of parameters present with
components. The writer design an algorithm for
assigning clusters to the reusable components.

3. PROPOSED WORK

Problem formulation-When a car is manufactured,
thousands of components are developed to get the final
complete car. Most of the components of the cars are
developed in such a way that these components are
interchangeable and can be used in any another car if
needed and if one component is not functioning properly
it can be interchanged with other component by
plugging in and out with other components, so that
changeability of the components is increased and
maintenance can be made easier. There is an urgent
need to understand how these software components can
be implemented as plug and play devices and
changeability of software components can be
understand in some tangible framework. Therefore, in
this research work we are solving this issue by building a
framework which helps to measure degree of

changeability by using clustering methods (machine
learning) , which would be best suited for our problem
definition and better from previous research works.

Objectives-

Develop representative dataset of projects(object-
oriented). Classify parameters which impact the
changeability& reusability of software components.
Develop a framework and to calculate the reusability,
changeability metrics. Using machine learning algorithm
to develop automated assessment of changeability&
reusability. estimation of proposed model using recall
and precision

4. RESULTS AND ANALYSIS

To build up a cost- effective and quality products is an
significant and challenging feature of software
development. Component-based software development
can help developers to produce well-organized software
within the time and budget constraints. The idea of
component-based software engineering (CBSE) is set on
the development of self-determining and loosely coupled
components of the system, by avoiding unrelated
dependency amid system components.

Figure4.1:calculating metrices using and eclips.

The figure shows that different metrices values are
calculate

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1684

Figure4.2:shows values for data set ,actual values and
predicted values.

Figure4.3:this figure shows actual training values for
sample programe.

Figure4.4: shows actual datasets for sample program.

Figure 4.5: shows the pridicted values to be tested for
sample programe.

The figures defines the ten data set values and five
training values for the actual dataset and five tested
values for pridicted data set.

Figure4.6:shows first project to be tested and it belongs
to third cluster and other four project belongs to fourth

cluster

5. CONCLUSION AND FUTURE SCOPE

The proposed model can calculate the reusability of
software components by using k means and clustering
methods. The proposed approach applied on 10 projects,
first five project define training values and other five
project define predicted values to be tested. It also
defines which project belongs to which group of cluster.
This information can be taken by proposed work. The
existing work can be extended by considering more
metrics like Sloc (source line of code), Rco (rate of
component observability), Emi (existence of meta
information) can be consider for better performance and
evalution of proposed work.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
 Volume: 04 Issue: 06 | June -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 1685

6. REFERENCES

1) Prakriti Trivedi “ Software Metrics to Estimate
Software Quality using Software Component
Reusability” IJCSI International Journal of Computer
Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814 www.IJCSI.org.

2) Shweta Bhambri1, Sheetal Chhabra2” Estimation of
Software Reusability Based on Clustering” DOI
10.4010/2016.1682 ISSN 2321 3361 © 2016 IJESC.

3) P. Edith Linda “Metrics for Component Based
Measurement Tools” International Journal
of Scientific & Engineering Research Volume 2,
Issue 5, May-2011 1ISSN 2229-5518.

4) Nael SALMAN’ Complexity Metrics AS Predictors of
Maintainability and Integrability of Software
components’ Çankaya Üniversitesi Fen-Edebiyat
Fakültesi, Journal of Arts and Sciences Say›: 5, May
2006.

5) ZHANG Min “ Improved research to k-means initial
cluster centers” 2015 Ninth International
Conference on Frontier of Computer Science and
Technology.

6) K. A. Abdul Nazeer’ Improving the Accuracy and
Efficiency of the k-means Clustering Algorithm
’Proceedings of the World Congress on Engineering
2009 Vol I WCE 2009, July 1 - 3, 2009, London, U.K.

7) Gholam Reza Shahmohammadia’ Identification of
System Software Components Using Clustering
Approach’ JOURNAL OF OBJECT TECHNOLOGY
Published by ETH Zurich, Chair of Software
Engineering © Jot, 2010 Online at
http://www.jot.fm.

8) Jianguo Chen ’Complexity Metrics for Component-
based Software Systems ’International Journal of
Digital Content Technology and its Applications.
Volume 5, Number 3, March 2011.

9) Divya Chaudhary’ International Journal of Advanced
Research in Computer Science and Software
Engineering’ Volume 3, Issue 7, July 2013 ISSN: 2277
128X. Suchita Yadav ‘Metrics Suite for Accessing the
Reusability of Component Based Software’

IJARCSSEll Rights Reserved Volume 4, Issue 5, May
2014 ISSN: 2277 128X.

10) Muhammad Husnain Zafar ‘Classification of
Reusable Components Based on Clustering’I.J.
Intelligent Systems and Applications, 2015, 10, 55-
62 Published Online September 2015 in MECS
(http://www.mecs-press.org/) DOI:
10.5815/ijisa.2015.10.07.

http://www.ijcsi.org/
http://www.jot.fm/
http://www.mecs-press.org/

