# KINEMATIC ANALYSIS OF VARIOUS ROBOT CONFIGURATIONS 

Game R. U. ${ }^{1}$, Davkhare A. A. ${ }^{2}$, Pakhale S. S. ${ }^{3}$, Ekhande S. B. ${ }^{4}$, Shinde V. B. ${ }^{5}$<br>1,2,3,4 Student, Dept. of Production Engineering, Amrutvahini College of Engineering, Maharashtra, India. ${ }^{5}$ Assistant Professor, Dept. of Production Engineering, Amrutvahini College of Engineering, Maharashtra, India.


#### Abstract

Robots are very powerful elements of today's industry and they are capable of performing many different task and operations precisely and do not require common safety and comfort element that humans need, however it takes much efforts and many resource to make a robot function properly. Robotic arms are widely used in industrial manufacturing. There is no doubt that robots have increased in capability and performance through improved mechanisms, controller, software development, sensing, drive systems, and materials. The goal of this study is to analyze forward and inverse kinematics of robot manipulators. The study includes use of D-H parameters for studying of both $D K$ and $I K$. The study models robot kinematics for $2 R, 3 R, 3 R-1 P, 5 R, 6 R$ using algebraic method along with RoboAnalyser and MATLAB. All results of these methods are compared and validated.


Key Words: Forward and Inverse Kinematics, Robot Manipulator, D-H parameters, Arm Matrix, RoboAnalyser, MATLAB.

## 1. INTRODUCTION

Robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. The emphasis on geometry means that the links of the robot are modelled as rigid bodies and its joints are assumed to provide pure rotation or translation.

Robot kinematics studies the relationship between the dimensions and connectivity of kinematic chains and the position, velocity and acceleration of each of the links in the robotic system, in order to plan and control movement and to compute actuator forces and torques. The relationship between mass and inertia properties, motion, and the associated forces and torques is studied as part of robot dynamics.

Forward kinematics uses the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. The reverse process that computes the joint parameters that achieve a specified position of the end-effector is known as inverse kinematics. [5]

The controlling of robot manipulator has been challenging with higher DOF. Position and orientation analysis of robotic manipulator is an essential step to design
and control. A robot manipulator consist a set of links connected together either in serial or parallel manner. The FK analysis is simple to do analysis of model and calculate the position using the joint angle. But the challenge is to analyze the IK solution using the position. So aim is to study complexity of the IK which increases with increase in the DOF. In this case we would be studying robot configurations i.e. $2 R, 3 R, 3 R-1 P, 5 R, 6 R$ where $R$ and $P$ stands for revolute and prismatic joints. The main motive of the study is to calculate the robot parameters i.e. study forward and inverse kinematics using algebraic method and then validate this calculations with the outputs from RoboAnalyser and MATLAB.

## 2. LITERATURE REVIEW

The study of forward kinematics is easy as its analysis is simple to do. The challenge is to do analysis of inverse kinematics. The study of inverse kinematics can be done by various means. These various means i.e. algebraic method [1], [3], [4], using software tools such as RoboAnalyser and MATLAB [2] are studied by various authors. The algebraic method is the traditional way to study the kinematics of robot manipulator whereas RoboAnalyser and MATLAB are used to validate these mathematical results. Here we would be using all three ways to compare their results and validate the results.

## 3. METHODOLOGY

The steps followed to do this study are named and explained in the next lines along with flowchart as in Fig. 1:

1. Study the robot kinematics both forward and inverse kinematics of robot manipulators.
2. Collect information regarding forward and inverse kinematics for various robot configuration under study i.e. $2 R, 3 R, 3 R-1 P, 5 R$ and $6 R$.
3. Collect formulae for this configurations to calculate their parameters for direct and inverse kinematics by algebraic method.
4. Study the RoboAnalyser for various robot configuration and using the same calculate the arm matrix and the configurations of the robot for direct and inverse kinematics.
5. Just like step 4 study the MATLAB for various robot configuration and using the same calculate the arm matrix and the configurations of the robot for direct and inverse kinematics.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 04 Issue: 05 | May -2017
www.irjet.net
p-ISSN: 2395-0072
6. Next compare the results of algebraic method and software results for each of the robot configuration.
7. Finally validate the results for all three ways of studying DK and IK.


Fig-1: Work Methodology
4. KINEMATIC ANALYSIS OF VARIOUS ROBOT MANIPULATORS
4.1 2R Mechanism [Two Axis Planar Articulated Robot Arm] [5]

### 4.1.1 Algebraic Method

### 4.1.1.1 3D Model



Fig-2: 3D Model of Two Axis Planar Articulated Robot Arm

### 4.1.1.2 Kinematic Parameters Table

Table-1: Kinematics Parameter Table

| Joints | Rows of <br> Table | Type of <br> Joint | $\theta_{\mathrm{k}}$ | $\mathrm{d}_{\mathrm{k}}$ | $\mathrm{a}_{\mathrm{k}}$ | $\alpha_{\mathrm{k}}$ | SHP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\theta_{1,}, \mathrm{~d}_{1}, \mathrm{a}_{1}, \mathrm{\alpha}_{1}$ | Base | $\theta_{1}$ | 0 | $\mathrm{a}_{1}$ | 0 | $60^{0}$ |
| 2 | $\theta_{2, \mathrm{~d}_{2}, \mathrm{a}_{2}, \alpha_{2}}$ | Shoulder | $\theta_{2}$ | 0 | $\mathrm{a}_{2}$ | 0 | $-60^{0}$ |

### 4.1.1.3 Arm Matrix

$$
\mathrm{T}_{0}{ }^{2}=\left[\begin{array}{cccc}
C_{12} & -S_{12} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
S_{12} & C_{12} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

### 4.1.1.4 Calculations

## Forward Kinematics

| Joint | $\theta$ | d | a | $\alpha$ |
| :---: | :---: | :---: | :---: | :---: |
| Base | $\theta_{1}$ | 0 | $\mathrm{a}_{1}$ | 0 |
| Shoulder | $\theta_{2}$ | 0 | $\mathrm{a}_{2}$ | 0 |
| $\mathrm{a}_{1}=100 \mathrm{~mm} \quad \theta_{1}=60^{0}$ |  |  |  |  |
| $\mathrm{a}_{2}=2$ |  |  |  |  |

## Solution

$$
\begin{aligned}
& P_{x}=a_{1} c_{1}+a_{2} c_{12} \\
& P_{y}=a_{1} s_{1}+a_{2} s_{12} \\
& P_{x}=50 \mathrm{~mm} \quad P_{y}=286.6025 \mathrm{~mm}
\end{aligned}
$$

## Inverse Kinematics

$$
\left[\begin{array}{cccc}
0 & -1 & 0 & 50 \\
1 & 0 & 0 & 286.6025 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

## Solution

$$
\begin{gathered}
\theta_{2}= \pm \cos \left[\frac{w_{1}^{2}+w_{2}^{2}-a_{1}^{2}-a_{2}^{2}}{2 * a_{1} * a_{2}}\right] \\
\theta_{1}=\tan ^{-1}\left[\frac{w_{2}\left(a_{1}+a_{2} c_{2}\right)-w_{1} s_{2} a_{2}}{w_{1}\left(a_{1}+a_{2} c_{2}\right)+w_{2} s_{2} a_{2}}\right] \\
\theta_{1}=59.99999863^{0} \\
\theta_{2}= \pm 30.00006631^{0}
\end{gathered}
$$

### 4.1.2 Using RoboAnalyser

### 4.1.2.1 Forward Kinematics

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 04 Issue: 05 | May -2017
www.irjet.net
p-ISSN: 2395-0072


Fig-3: Results of Two Axis Planar Articulated Robot Arm for Direct Kinematics

### 4.1.2.2 Inverse Kinematics



Fig-4: Results of Two Axis Planar Articulated Robot Arm for Inverse Kinematics

### 4.1.3 Using MATLAB

```
m,om
%Non-zero constant DH parameterss
clc
clear
L1=100; L2=200;
Input
x=50;
y=286.6025;
Intermediate calculation
del=(x*x)+(y*y)-(L1*L1) - (L2*L2);
SCalculations for theta 2
c2=del/(2*L1*L2);
t2=acos (c2)
sfalculation for finding theta_1
tan1=(y* (L1+L2* cos(t2))-x*L2* sin(t2))/(x* (L1+L2* cos(t2))+y*L2*sin(t2));
T11=atan(tan1)
%Angles in degree
r2d=180/pi;
t2d=t2*r2d
T11d=T11*r2d
```

Fig-5: MATLAB Program for IK of Two Axis Planar Articulated Robot Arm

```
t2=
    0.5236
T11 =
    1.0472
    t2d =
    30.0001
T11d =
fx
```

Fig-6: MATLAB Results for IK of Two Axis Planar Articulated Robot Arm

### 4.2 3R Mechanism [3-Axis Planar Articulated Arm i.e. Mini Drafter] [5]

### 4.2.1 Algebraic Method

### 4.2.1.1 3D Model



Fig-7: 3D Model of 3-Axis Planar Articulated Arm

### 4.2.1.2 Kinematics Parameter Table

Table-2: Kinematics Parameter Table

| Joint | Rows of <br> Table | Type | $\theta$ | d | a | $\alpha$ | SHP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\theta 1, \mathrm{~d} 1, \mathrm{a} 1, \alpha 1$ | Base | $\theta 1$ | 0 | a1 | 0 | $60^{0}$ |
| 2 | $\theta 2, \mathrm{~d} 2, \mathrm{a} 2, \alpha 2$ | Shoulder | $\theta 2$ | 0 | a 2 | 0 | $-60^{0}$ |
| 3 | $\theta 3, \mathrm{~d} 3, \mathrm{a} 3, \alpha 3$ | Roll | $\theta 3$ | d 3 | 0 | 0 | 0 |

### 4.2.1.3 Arm Matrix

$\mathrm{T}_{0}{ }^{3}=\left[\begin{array}{cccc}C_{123} & -S_{123} & 0 & a_{1} c_{1}+a_{2} c_{12} \\ S_{123} & C_{123} & 0 & a_{1} s_{1}+a_{2} s_{12} \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1\end{array}\right]$

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 04 Issue: 05 | May -2017
www.irjet.net
p-ISSN: 2395-0072

### 4.2.1.4 Calculations:

## Forward Kinematics

| Joint | $\theta$ | d | a | $\alpha$ |
| :---: | :---: | :---: | :---: | :---: |
| Base | $\theta 1$ | 0 | a 1 | 0 |
| Shoulder | $\theta 2$ | 0 | a 2 | 0 |
| Roll | $\theta 3$ | d 3 | 0 | 0 |

$\mathrm{a}_{1}=\mathrm{a}_{2}=100 \mathrm{~mm}$
$\mathrm{d}_{3}=50 \mathrm{~mm}$
$\theta_{1}=60^{\circ}$
$\theta_{2}=30^{0}$
$\theta_{3}=0^{0}$

## Solution

$$
\begin{array}{r}
\mathrm{T}_{0}{ }^{3}=\left[\begin{array}{cccc}
0 & -1 & 0 & 50 \\
1 & 0 & 0 & 186.6025 \\
0 & 0 & 1 & 50 \\
0 & 0 & 0 & 1
\end{array}\right] \\
P_{x}=50 \mathrm{~mm} \\
P_{y}=186.6025 \mathrm{~mm}
\end{array}
$$

## Inverse Kinematics

$$
\left[\begin{array}{cccc}
0 & -1 & 0 & 50 \\
1 & 0 & 0 & 186.6025 \\
0 & 0 & 1 & 50 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## Solution

$$
\begin{aligned}
& \theta_{2}= \pm \cos \left[\frac{w_{1}^{2}+w_{2}^{2}-a_{1}^{2}-a_{2}^{2}}{2 * a_{1} * a_{2}}\right] \\
& \theta_{1}= \pm \tan ^{-1}\left[\frac{w_{2}\left(a_{1}+a_{2} c_{2}\right)+w_{1} s_{2} a_{2}}{w_{1}\left(a_{1}+a_{2} c_{2}\right)-w_{2} s_{2} a_{2}}\right]
\end{aligned}
$$

$$
\theta_{123}=\theta_{1+} \theta_{2}+\theta_{3}
$$

$$
\theta_{3}=\theta_{123-}-\theta_{1+} \theta_{2}
$$

$$
\begin{gathered}
\theta_{1}=59.9999938^{\circ} \\
\theta_{2}= \pm 30.00008634^{\circ} \\
\theta_{3}=0^{0}
\end{gathered}
$$

### 4.2.2 Using RoboAnalyser

### 4.2.2.1 Forward Kinematics



Fig-8: Results of 3-Axis Planar Articulated Arm for Forward Kinematics

### 4.2.2.2 Inverse Kinematics



Fig-9: Results of 3-Axis Planar Articulated Arm for Inverse Kinematics

### 4.2.3 Using MATLAB

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 04 Issue: 05 | May -2017
www.irjet.net
p-ISSN: 2395-0072

```
*Program for the inverse kinematics of 3-link arms
%Non-zero constant DH parameters
clc
clear
a1=100; a2=100; a3=0;
%Input
phi=90;
px=50;
py=186.6025;
%Intermediate calculations
wx=px-a3*cos(phi);
wy=py-a3*sin(phi);
del=wX*wx+wy*wy-a1*a1-a2*a2;
%Calculations for theta_2
c2=del/(2*a1*a2);
s2=sqrt (1-c2*c2);
th2=acos(c2)
%Calculation for finding theta_1
tan1=((a1+a2*c2)*wy-a2*s2*wx)/((a1+a2*c2)*wx+a2*s2*wY);
th1=atan (tan1)
*Angles in degree
r2d=180/pi;
th1d=th1*r2d
th2d=th2*r2d
%Calculation for theta_3
th3=phi-(th1d+th2d)
```

Fig-10: MATLAB program for IK of 3-Axis Planar Articulated Arm

```
th1d =
    60.0000
th2d =
    30.0001
```

```
th3 =
```

th3 =
-4.0071e-005
-4.0071e-005
fx >> |

```

Fig-11: MATLAB Results for IK of 3-Axis Planar Articulated Arm
4.3 3R-1P Mechanism [4-Axis Adept-1 SCARA Robot] [5]

\subsection*{4.3.1 Algebraic Method}

\subsection*{4.3.1.1 3D Model}


Fig-12: 3D Model of 4-Axis Adept-1 SCARA Robot

\subsection*{4.3.1.2 Kinematic Parameters Table}

Table-3: Kinematics Parameter Table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Joints & \begin{tabular}{c} 
Rows of KP \\
Table
\end{tabular} & \begin{tabular}{c} 
Types of \\
Joint
\end{tabular} & \(\theta \mathrm{k}\) & dk & ak & \(\alpha \mathrm{k}\) \\
\hline 1 & \(\theta 1, \mathrm{~d} 1, \mathrm{a} 1, \alpha 1\) & Base & \(\theta 1\) & d 1 & a 1 & \(\pm \pi\) \\
\hline 2 & \(\theta 2, \mathrm{~d} 2, \mathrm{a} 2, \mathrm{\alpha} 2\) & Elbow & \(\theta 2\) & 0 & a 2 & 0 \\
\hline 3 & \(\theta 3, \mathrm{~d} 3, \mathrm{a} 3, \alpha 3\) & \begin{tabular}{c} 
Vertical \\
Extension
\end{tabular} & \(\theta 3=0^{0}\) & d 3 & 0 & 0 \\
\hline 4 & \(\theta 4, \mathrm{~d} 4, \mathrm{a} 4, \alpha 4\) & Roll & \(\theta 4\) & d 4 & 0 & 0 \\
\hline
\end{tabular}

\subsection*{4.3.1.3 Arm Matrix}
\[
\mathrm{T}_{0}{ }^{4}=\left[\begin{array}{cccc}
C_{124} & S_{124} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
S_{124} & -C_{124} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & -1 & d_{1}-q_{3}-d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
\]

\subsection*{4.3.1.4 Calculations:}

\section*{Forward Kinematics}
\begin{tabular}{|c|c|c|c|c|}
\hline Joint & \(\theta\) & d & a & \(\alpha\) \\
\hline Base & \(\theta 1\) & 877 & 425 & \(\pm \pi\) \\
\hline Shoulder & \(\theta 2\) & 0 & 375 & 0 \\
\hline VE & 0 & d 3 & 0 & 0 \\
\hline Roll & \(\theta 4\) & 200 & 0 & 0 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \theta_{1}=60^{0}, \theta_{2}=0^{0} \\
& \theta_{4}=30^{0} \\
& d_{3}=100 \mathrm{~mm}
\end{aligned}
\]

\section*{Solution}
\[
\mathrm{T}_{0}{ }^{4}=\left[\begin{array}{cccc}
0.866 & 0.5 & 0 & 400 \\
0.5 & -0.866 & 0 & 692.82 \\
0 & 0 & -1 & 577 \\
0 & 0 & 0 & 1
\end{array}\right]
\]

\section*{Inverse Kinematics}
\[
\left[\begin{array}{cccc}
0.866 & 0.5 & 0 & 400 \\
0.5 & -0.866 & 0 & 692.82 \\
0 & 0 & -1 & 577 \\
0 & 0 & 0 & 1
\end{array}\right]
\]

\section*{Solution}
\[
\begin{aligned}
& \theta_{2}= \pm \cos \left[\frac{w_{1}^{2}+w_{2}^{2}-a_{1}^{2}-a_{2}^{2}}{2 * a_{1} * a_{2}}\right] \\
& \theta_{4}=\theta_{124}-\theta_{1}-\theta_{2} \\
& \theta_{124}=\tan ^{-1}\left[\frac{R_{21}}{R_{11}}\right] \\
& \theta_{4}=\theta_{124}-\theta_{1}-\theta_{2} \\
& p_{3} \text { or } w_{3}=d_{1}-q_{3}-d_{4} \\
& q_{3} \text { i.e } d_{3}=d_{1}-d_{4}-w_{3}
\end{aligned}
\]
\[
\theta_{1}= \pm 60.00002314^{\circ}
\]
\[
\theta_{2}= \pm 0.0025^{\circ}
\]
\[
\theta_{4}=29.99747686^{\circ}
\]
\[
\mathrm{d}_{3}=100 \mathrm{~mm}
\]

\subsection*{4.3.2 Using RoboAnalyser}

\subsection*{4.3.2.1 Forward Kinematics}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Jort } \\
& \text { Now }
\end{aligned}
\] & Jont Type & \begin{tabular}{l}
Jort Offset \\
b) \(m\)
\end{tabular} & Joirt Angle (teta) dog & Lnk Lengh (a) \(=\) & Trist Angle (whola) det & Hed Vale (DV) Seg orm & Find Vale (N) Sog or m \\
\hline 1. & flevotie & 0.87 & Vsostle & 0.485 & 150 & 00 & 0 \\
\hline 2 & Perolute & 0 & Vasoble & 0.375 & 0 & 0 & 0 \\
\hline 3 & Pausec & Vinstie & 0 & 0 & 9 & 0.1 & 0 \\
\hline 4 & Revolte & 02 & Verable & 0 & 0 & 30 & 0 \\
\hline
\end{tabular}


Fig-13: Results of 4-Axis Adept-1 SCARA Robot for Forward Kinematics

\subsection*{4.3.2.2 Inverse Kinematics}

Due to certain limitations inverse kinematics for this configuration couldn't be completed by RoboAnalyser. So using Arm Matrix from DK we have calculated IK values using algebraic method. Similarly for 5R and 6R is done.

\section*{Results}
\[
\begin{aligned}
& \theta_{1}=60^{0} \\
& \theta_{2}=0^{0} \\
& \theta_{4}=30.0001^{0} \\
& d_{3}=100 \mathrm{~mm}
\end{aligned}
\]

\subsection*{4.6.3.3 Using MATLAB}
```

\$Program for the inverse kinematics of 3R-1P
2 %Non-zero constant DH parameters
clc
clear
a1=425; a2=375; a3=0;
%Input2
phi=90;
px=400;
py=692.82;
pz=577;
d1=877;
d4=200;
R21=1;
R11=0;
\&Intermediate calculations
del=px*px+py*py-a1*a1-a2*a2;
%Calculations for theta_2
c2=del/(2*a1*a2);
s2=sqrt (1-c2*c2);
thc2=acos(c2);
ths2=asin(s2);
8Calculation for finding theta_1
s1=(a1+a2*c2)*px+(a2*s2)*py/ ( (px*px+py*py));
c1=(a1+a2*c2)*px-(a2*s2)*py/ ( (px*px+py*py));
tan1=((a1+a2*c2)*py+a2*s2*px)/((a1+a2*c2)*px-a2*s2*py);
th1=atan(tan1);
8Angles in degree
r2d=180/pi;
th1d=th1*r2d
thc2d=the2*r2d
%Calculation for theta_4
th3d=phi-th1d-thc2d
8Calculation for d_3
d3=d1-d4-pz

```

Fig-14: MATLAB program for IK of 4-Axis Adept-1 SCARA Robot

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 04 Issue: 05 | May -2017
```

th1d =
60.0450
thc2d =
0.0960
th3d=
29.8590
d3 =
100
fx >>

```

Fig-15: MATLAB Results for IK of 4-Axis Adept-1 SCARA Robot
4.4 5R Mechanism [Five Axis Articulated Microbot \(\alpha\)-II Robot Arm] [5]

\subsection*{4.4.1 Algebraic Method}

\subsection*{4.4.1.1 3D Model}


Fig-16: 3D Model of Five Axis Articulated Microbot \(\alpha\)-II Robot Arm

\subsection*{4.4.1.2 Kinematics Parameter Table}

Table-4: Kinematics Parameter Table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Joints & \begin{tabular}{c} 
Rows of KP \\
Table
\end{tabular} & \begin{tabular}{c} 
Types of \\
Joint
\end{tabular} & \(\theta \mathrm{k}\) & dk & ak & \(\alpha \mathrm{k}\) \\
\hline 1 & \(\theta 1, \mathrm{~d} 1, \mathrm{a} 1, \alpha 1\) & Base & \(\theta 1\) & d 1 & 0 & \(-90^{0}\) \\
\hline 2 & \(\theta 2, \mathrm{~d} 2, \mathrm{a} 2, \alpha 2\) & Shoulder & \(\theta 2\) & 0 & a 2 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3 & \(\theta 3, \mathrm{~d} 3, \mathrm{a} 3, \alpha 3\) & Elbow & \(\theta 3\) & 0 & a 3 & 0 \\
\hline 4 & \(\theta 4, \mathrm{~d} 4, \mathrm{a} 4, \alpha 4\) & Tool Pitch & \(\theta 4\) & 0 & a 4 & \(-90^{0}\) \\
\hline 5 & \(\theta 5, \mathrm{~d} 5, \mathrm{a} 5, \alpha 5\) & Tool Roll & \(\Theta 5\) & d 5 & 0 & 0 \\
\hline
\end{tabular}

\subsection*{4.4.1.3 Arm Matrix}
\(\mathrm{T}_{0}{ }^{5}=\)
\(\left[\begin{array}{cccc}C_{1} C_{234} C_{5}+S_{1} S_{5} & -C_{1} S_{5} C_{234}+S_{1} C_{5} & -C_{1} S_{234} & C_{1}\left(a_{2} c_{2}+a_{3} c_{23}-d_{5} S_{234}\right) \\ S_{1} C_{234} C_{5}-C_{1} S_{5} & -S_{1} S_{5} C_{234}-C_{1} C_{5} & -S_{1} S_{234} & S_{1}\left(a_{2} c_{2}+a_{3} c_{23}-d_{5} S_{234}\right) \\ -C_{5} S_{234} & S_{234} S_{5} & -C_{234} & d_{1}-a_{2} s_{2}-a_{3} s_{23}-d_{5} C_{234} \\ 0 & 0 & 0 & 1\end{array}\right]\)

\subsection*{4.4.1.4 Calculations}

\section*{Forward Kinematics}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Type of \\
Joint
\end{tabular} & \(\theta\) & d & a & \(\alpha\) \\
\hline Base & \(\theta 1\) & 215 & 0 & \(-90^{0}\) \\
\hline Shoulder & \(\theta 2\) & 0 & 177.8 & 0 \\
\hline Elbow & \(\theta 3\) & 0 & 177.8 & 0 \\
\hline Tool Pitch & \(\theta 4\) & 0 & \(\mathrm{a}_{4}\) & \(-90^{0}\) \\
\hline Tool Roll & \(\Theta 5\) & 129.5 & 0 & 0 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \theta_{1}=30^{0} \\
& \theta_{2}=-60^{0} \\
& \theta_{3}=90^{0} \\
& \theta_{4}=0^{0} \\
& \theta_{5}=45^{0} \\
& a_{4}=0
\end{aligned}
\]

\section*{Solution}
\[
\mathrm{T}_{0}{ }^{5}=\left[\begin{array}{cccc}
0.8839 & -0.1768 & -0.4330 & 154.265 \\
-0.3062 & -0.9186 & -0.25 & 89.065 \\
-0.3536 & 0.3536 & -0.8660 & 167.929 \\
0 & 0 & 0 & 1
\end{array}\right]
\]

\section*{Inverse Kinematics}
\[
\left[\begin{array}{cccc}
0.8839 & -0.1768 & -0.4330 & 154.265 \\
-0.3062 & -0.9186 & -0.25 & 89.065 \\
-0.3536 & 0.3536 & -0.8660 & 167.929 \\
0 & 0 & 0 & 1
\end{array}\right]
\]

\section*{Solution}
\[
\begin{aligned}
& \theta_{1}=\tan ^{-1}\left(\frac{w_{2}}{w_{1}}\right) \\
& \theta_{234}=\tan ^{-1}\left[\frac{-\left(C_{1} w_{4}+S_{1} w_{5}\right)}{-w_{6}}\right] \\
& -C_{2 a 4}=-0.8660 \\
& b_{2}=d_{1}-d_{5} C_{234}-w_{3} \\
& b_{1}=C_{1} w_{1}+S_{1} w_{2}+d_{5} s_{2 a 4} \\
& \theta_{a}= \pm \cos ^{-1}\left[\frac{b_{1}^{2}+b_{2}^{2}-a_{2}^{2}-a_{a}^{3}}{2 a_{2} a_{a}}\right] \\
& \theta_{2}= \pm \cos ^{-1}\left[\frac{\left(a_{2}+a_{3} C_{3}\right) b_{1}+\left(a_{2} S_{3}\right) b_{2}}{\|b\|^{2}}\right] \\
& \|b\| \|^{2}=a_{2}^{2}+a_{a}^{2}+2 * a_{2} * a_{a} * C_{2} \\
& \theta_{234}=\theta_{2}+\theta_{3}+\theta_{4} \\
& \theta_{4}=\theta_{2 a 4}-\theta_{2}-\theta_{a} \\
& \theta_{5}=\tan ^{-1}\left[\frac{R_{a 2}}{-R_{a 1}}\right]
\end{aligned}
\]
\[
\theta_{1}=30.00001692
\]
\[
\theta_{a}=89.99974525^{\circ}
\]
\[
\theta_{2}=-59.99988837^{\circ}
\]
\[
\theta_{4}=0^{\circ}
\]

\subsection*{4.4.2 Using RoboAnalyser}

\subsection*{4.4.2.1 Forward Kinematics}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { bort } \\
& \text { Nor }
\end{aligned}
\] & dort Type & \begin{tabular}{l}
Jort Offset \\
क) m
\end{tabular} & Joirt Angle (theta) deg & Lrk Lengh (a) \(m\) & Trist Angle (Joha) dog & Intal Walue (V) dogorn & Final Value (M) deg or m \\
\hline 1 & Revole & 0215 & Varatio & 0 & -90 & 30 & 0 \\
\hline 2 & Reroble & 0 & Verole & 0178 & 0 & 60 & \(\infty\) \\
\hline 3 & Reroble & 0 & Vatable & Q.1778 & 0 & so & 0 \\
\hline 4 & Fevolte & 0 & Vwosle & 0 & 9 & 0 & 0 \\
\hline 5 & Prookte & 0.1295 & Vrashe & 0 & 0 & 45 & 0 \\
\hline
\end{tabular}


Fig-17: Results of Five Axis Articulated Microbot \(\alpha\)-II Robot Arm for Forward Kinematics

\subsection*{3.4.2.2 Inverse Kinematics}

Results
\[
\begin{gathered}
\theta_{1}=30.0001^{0} \\
\theta_{2}=-59.999^{0} \\
\theta_{3}=90^{0} \\
\theta_{4}=0^{0} \\
\theta_{5}=45^{0}
\end{gathered}
\]

\subsection*{4.4.3 Using MATLAB}
```

%Program for the inverse kinematics of 5R
%Non-zero constant DH parameters
clc
clear
a2=177.8; a3=177.8;
%Input2
px=154.265;
py=89.065;
pz=167.929;
s234=0.5;
c234=0.8660;
th234=30;
d1=215;
d5=129.5;
R32=0.3536;
R31=-0.3536;
%calculation for r_2_d
r2d=180/pi;
%calculation for theta_1
tan1=py/px;
t1=atan(tan1);
th1d=t1*r2d

```

International Research Journal of Engineering and Technology (IRJET)
Volume: 04 Issue: 05 | May -2017
www.irjet.net
e-ISSN: 2395-0056
p-ISSN: 2395-0072
```

23- c1=cos(t1);
s1=sin(t1);
%Intermediate calculations
b2=d1-d5*c234-pz;
b1=c1*px+s1*py+d5*s234;
%Calculations for theta_3
c3=(b1*b1+b2*b2-a2*a2-a3*a3) / (2*a2*a3) ;
th3=acos(c3);
s3=sin(th3);
th3d=th3*r2d
%Calculation for theta_2
c2=((a2+a3* c3)*b1+(a3*s3)*b2) / (a2*a2+a3*a3+2*a2*a3*c3)
th2=acos(c2);
th2d=-th2*r2d
%Calculation for theta_4
th4=th234-th2d-th3d;
th4d=th4*r2d
%Calculation for theta 5
th5=atan(R32/(-R31));
th5d=th5*r2d

```

Fig-18: MATLAB program for IK of Five Axis Articulated Microbot \(\alpha\)-II Robot Arm
```

th1d =

```
    30.0000
th3d \(=\)
    90.0001
\(\operatorname{th} 2 \mathrm{~d}=\)
    \(-59.9993\)
th \(4 \mathrm{~d}=\)
    \(-0.0476\)
```

th5d =
4 5

```

Fig-19: MATLAB Results for IK of Five Axis Articulated Microbot \(\alpha\)-II Robot Arm

\subsection*{4.5 6R Mechanism [Puma 560 6R Robot] [2],[3]}

\subsection*{4.5.1 Algebraic Method}

\subsection*{4.5.1.1 3D Model}


Fig-20: 3D Model of Puma 560 6R Robot

\subsection*{4.5.1.2 Kinematic Parameters Table}

Table-5: Kinematics Parameter Table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Joints & \begin{tabular}{c} 
Rows of KP \\
Table
\end{tabular} & \begin{tabular}{c} 
Types of \\
Joint
\end{tabular} & \(\theta \mathrm{k}\) & dk & ak & \(\alpha \mathrm{k}\) \\
\hline 1 & \(\theta 1, \mathrm{~d} 1, \mathrm{a} 1, \alpha 1\) & Base & \(\theta 1\) & 0 & 0 & \(-90^{0}\) \\
\hline 2 & \(\theta 2, \mathrm{~d} 2, \mathrm{a} 2, \alpha 2\) & Shoulder & \(\theta 2\) & d 2 & a 2 & 0 \\
\hline 3 & \(\theta 3, \mathrm{~d} 3, \mathrm{a} 3, \alpha 3\) & Elbow & \(\theta 3\) & d 3 & a 3 & \(90^{0}\) \\
\hline 4 & \(\theta 4, \mathrm{~d} 4, \mathrm{a} 4, \alpha 4\) & Tool Pitch & \(\theta 4\) & d 4 & 0 & \(-90^{0}\) \\
\hline 5 & \(\theta 5, \mathrm{~d} 5, \mathrm{a} 5, \alpha 5\) & Tool Yaw & \(\Theta 5\) & 0 & 0 & \(90^{0}\) \\
\hline 6 & \(\theta 6, \mathrm{~d} 6, \mathrm{a} 6, \alpha 6\) & Tool Roll & \(\theta 6\) & d 6 & 0 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

\subsection*{4.5.1.3 Arm Matrix}
\(\left[\begin{array}{ccccc}r_{11} & r_{12} & r_{13} & \vdots & p_{x} \\ r_{21} & r_{22} & r_{23} & \vdots & p_{y} \\ r_{31} & r_{32} & r_{33} & \vdots & p_{z} \\ \cdots & \cdots & \cdots & \vdots & \cdots \\ 0 & 0 & 0 & \vdots & 1\end{array}\right]\)
\(\mathrm{r}_{11}=\mathrm{C}_{1}\left[\mathrm{C}_{23}\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}-\mathrm{S}_{4} \mathrm{~S}_{6}\right)-\mathrm{S}_{2 \mathrm{a}} \mathrm{S}_{5} \mathrm{C}_{6}\right]+\mathrm{S}_{1}\left[\mathrm{~S}_{4} \mathrm{C}_{5} \mathrm{C}_{6}+\mathrm{C}_{4} \mathrm{~S}_{6}\right]\)
\(\mathrm{r}_{21}=\mathrm{S}_{1}\left[\mathrm{C}_{2 \mathrm{a}}\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}-\mathrm{S}_{4} \mathrm{~S}_{6}\right)-\mathrm{S}_{23} \mathrm{~S}_{5} \mathrm{C}_{6}\right]-\mathrm{C}_{1}\left[\mathrm{~S}_{4} \mathrm{C}_{5} \mathrm{C}_{6}+\mathrm{C}_{4} \mathrm{~S}_{6}\right]\)
\(\mathrm{r}_{31}=-\mathrm{S}_{2 \mathrm{a}}\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}-\mathrm{S}_{4} \mathrm{~S}_{6}\right)-\mathrm{C}_{2 \mathrm{~B}} \mathrm{~S}_{5} \mathrm{C}_{6}\)
\(r_{12}=C_{1}\left[C_{28}\left(-C_{4} C_{5} S_{6}-S_{4} C_{6}\right)+S_{28} S_{5} S_{6}\right]+S_{1}\left[-S_{4} C_{5} S_{6}+C_{4} C_{6}\right]\)
\(\mathrm{r}_{22}=\mathrm{S}_{1}\left[\mathrm{C}_{2 \mathrm{a}}\left(-\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{~S}_{6}-\mathrm{S}_{4} \mathrm{C}_{6}\right)+\mathrm{S}_{2 \mathrm{a}} \mathrm{S}_{5} \mathrm{~S}_{6}\right]-\mathrm{C}_{1}\left[-\mathrm{S}_{4} \mathrm{C}_{5} \mathrm{~S}_{6}+\mathrm{C}_{4} \mathrm{C}_{6}\right]\)
\(r_{32}=-S_{23}\left(C_{4} C_{5} S_{6}-S_{4} C_{6}\right)+C_{23} S_{5} S_{6}\)
\(r_{13}=-C_{1}\left(C_{23} C_{4} S_{5}+S_{23} C_{5}\right)-S_{1} S_{4} S_{5}\)
\(r_{2 \mathrm{a}}=-S_{1}\left(C_{2 \mathrm{a}} C_{4} S_{5}+S_{2 \mathrm{a}} C_{5}\right)+C_{1} S_{4} S_{5}\)
\(\mathrm{r}_{3 \mathrm{a}}=\mathrm{S}_{2 \mathrm{a}} \mathrm{C}_{4} \mathrm{~S}_{5}-\mathrm{C}_{2 \mathrm{a}} \mathrm{C}_{5}\)
\(P_{x}=C_{1}\left(a_{2} C_{2}+a_{2} C_{2 a}-S_{2 a} d_{4}\right)-d_{3} S_{1}\)
\(P_{y}=S_{1}\left(a_{2} C_{2}+a_{d} C_{2 a}-S_{2 a} d_{4}\right)+d_{d} C_{1}\)
\(P_{x}=-a_{2} S_{2}-a_{g} S_{2 a}-C_{2 a} d_{4}\)
For last 3 angles i.e. \(\theta_{4}, \theta_{5}, \theta_{6}\)
\({ }_{6}^{\mathrm{a}}[R]=\left[\begin{array}{ccc}C_{4} C_{5} C_{6}-S_{4} S_{6} & -C_{4} C_{5} S_{6}-S_{4} C_{6} & -C_{4} C_{5} \\ S_{5} C_{6} & -S_{5} S_{6} & C_{5} \\ -S_{4} C_{5} C_{6}-C_{4} S_{6} & S_{4} C_{5} S_{6}-C_{4} C_{6} & S_{4} S_{5}\end{array}\right]\)

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 04 Issue: 05 | May -2017
www.irjet.net
p-ISSN: 2395-0072

\subsection*{4.5.1.4 Calculations}

Forward Kinematics
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Types of \\
Joint
\end{tabular} & \(\theta\) & d & a & \(\alpha\) \\
\hline Base & \(\theta 1\) & 0 & 0 & \(-90^{0}\) \\
\hline Shoulder & \(\theta 2\) & 500 & 700 & 0 \\
\hline Elbow & \(\theta 3\) & 94.8 & 948 & \(90^{0}\) \\
\hline Tool Pitch & \(\theta 4\) & 680 & 0 & \(-90^{0}\) \\
\hline Tool Yaw & \(\Theta 5\) & 0 & 0 & \(90^{0}\) \\
\hline Tool Roll & \(\Theta 6\) & 853 & 0 & 0 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \theta_{1}=60^{0} \\
& \theta_{2}=30^{0} \\
& \theta_{3}=45^{0} \\
& A_{4}=0^{0} \\
& \theta_{5}=9^{0} \\
& \theta_{6}=0^{0}
\end{aligned}
\]

\section*{Solution}
\[
\begin{aligned}
& \mathrm{T}_{0} 6=\left[\begin{array}{cccc}
-0.4829 & 0.8660 & -0.1294 & 15.27 \\
-0.8365 & -0.5 & -0.2241 & 216 \\
-0.2588 & 0 & 0.9659 & -1441.6 \\
0 & 0 & 0 & 1
\end{array}\right] \\
&{ }_{6}^{\mathrm{a}}[\mathrm{R}]=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \mathrm{P}_{\mathrm{x}}=\mathrm{x}=15.27 \mathrm{~mm} \\
& \mathrm{P}_{\mathrm{y}}=\mathrm{y}=216 \mathrm{~mm} \\
& \mathrm{P}_{\mathrm{z}}=\mathrm{z}=-1441.6 \mathrm{~mm}
\end{aligned}
\]

\section*{Inverse Kinematics}
\(\theta_{1}=2 \tan ^{-1}\left[\frac{-x \pm \sqrt{x^{2}+y^{2}-d_{a}^{2}}}{y+d_{\mathrm{a}}}\right]\)
\(\theta_{\mathrm{a}}=2 \tan ^{-1}\left[\frac{-d_{4} \pm \sqrt{d_{4}{ }^{2}+a_{\mathrm{a}}{ }^{2}-K^{2}}}{K+a_{\mathrm{a}}}\right]\)
Where, \(K=\left(\frac{1}{2 a_{2}}\right)\left(x^{2}+y^{2}+z^{2}-d_{a}{ }^{2}-a_{2}{ }^{2}-a_{a}{ }^{2}-d_{4}{ }^{2}\right)\)
\[
\begin{aligned}
& \theta_{2}=2 \tan ^{-1}\left[\frac{-a_{2}-a_{3} c_{3}+d_{4} s_{3} \pm \sqrt{a_{2}^{2}+a_{3}^{2}+d_{4}^{2}+2 a_{2}\left(a_{3} c_{3}-d_{4} s_{3}\right)-z^{2}}}{z-\left(a_{3} s_{3}+d_{4} c_{3}\right)}\right] \\
& \theta_{6}^{3}[R]=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \theta_{6}=\cos ^{-1}\left(r_{23}\right) \\
& \theta_{4}=\sin ^{-1}\left[\frac{-r 22}{r 21}\right] \\
& \left.\quad \theta_{1}=593.99287582^{5}\right] \\
& \theta_{3}=45.00048521^{0} \\
& \theta_{2}=29.998636788^{0} \\
& \theta_{4}=00 \\
& \theta_{5}=900 \\
& \theta_{6}=00
\end{aligned}
\]

\subsection*{4.5.2 Using RoboAnalyser}

\subsection*{4.5.2.1 Forward Kinematics}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { fort } \\
& \text { No }
\end{aligned}
\] & Jort Type & Jort Cfyest b) m & \begin{tabular}{l}
Jort Ange \\
(thesa) Seg
\end{tabular} & Lrk lengh (a) \(m\) & Twith ingh (whal) See & real Vale (W) degorm & Ins Vade (D) ingorm \\
\hline 1 & Pernltr & 0 & Vousble & 0 & \% & 60 & 0 \\
\hline 2 & Provkt & 05 & Varsin & 07 & 0 & 3 & 0 \\
\hline 3 & Rerokte & 0056 \({ }^{\text {a }}\) & Varable & 0943 & 30 & 45 & 0 \\
\hline 4 & Frvolte & 068 & Vrask & 0 & 80 & 0 & 0 \\
\hline 5 & Revole & 0 & Varable & 0 & 30 & 90 & 0 \\
\hline 6 & Provkte & 0.65 & Varabin & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}


Fig-21: Results of Puma 560 6R Robot for Forward Kinematics

\subsection*{4.5.2.2 Inverse Kinematics}

\section*{Results}
\[
\begin{aligned}
& \theta_{1}=75.114638577^{0} \\
& \theta 2=46.3399-62.41 \mathrm{i}^{0} \\
& \theta 3=35.65+103.96 \mathrm{i}^{0} \\
& \theta_{4}=0^{0} \\
& \theta_{5}=90^{0} \\
& \theta_{6}=0^{0}
\end{aligned}
\]

\subsection*{4.5.3 Using MATLAB}

1

\section*{23 - \(\quad a=s q r t(p x \star p x+p y \star p y-d 3 * d 3)\);}
\(K=(0.5 / a 2) \star(p x * p x+p y * p y+p z * p z-d 3 * d 3-a 2 * a 2-a 3 * a 3-d 4 * d 4)\);
```

%Program for the inverse kinematics of 6R
%Non-zero constant DH parameters
clc
clear
a2=0.7; a3=0.948;
%Input2
px=0.01527;
py=0.2160;
pz=-1.4416;
d2=0.5;
d3=0.0948;
d4=0.68;
r23=0;
r22=0;
r21=1;
r33=0;
%calculation for r_2_d
r2d=180/pi;
%Intermediate calculations

```
\(\mathrm{b}=\) sqrt \(\left(\mathrm{d} 4 * \mathrm{~d} 4+\mathrm{a} 3 \star \mathrm{a} 3-\mathrm{K}^{\star} \mathrm{K}\right)\);
\%calculation for theta_1
\(\tan 1=(-p x+a) /(p y+d 3)\);
\(\mathrm{t} 11=\operatorname{atan}(\tan 1)\);
\(\mathrm{t} 1=2^{\star} \mathrm{t} 11\);
\(\mathrm{th} 1 \mathrm{~d}=\mathrm{t} 1^{*} \mathrm{r} 2 \mathrm{~d}\)
\(\mathrm{t} 1=2 \star \mathrm{t} 11\);
\(\mathrm{th} 1 \mathrm{~d}=\mathrm{t} 1\) * r 2 d
\(\mathrm{c} 1=\cos (\mathrm{t} 1)\);
s1=sin(t1);
\%Calculations for theta_3
\(\tan 3=(-d 4+b) /(K+a 3)\);
\(\mathrm{t} 13=\mathrm{atan}(\tan 3)\);
t3 \(=2\) *t 13 ;
c3 \(=\cos\) ( t 3 ) ;
\(s 3=\sin (t 3)\);
th3d=t3*r2d
\(s 3=\sin (t 3) ;\)
th \(3 \mathrm{~d}=\mathrm{t} 3 *\) r 2 d
\%Intermediate calculations
\(\mathrm{c}=\) sqrt (a2*a2+a3*a3+d4*d4+2*a2*(a3*c3-d4*s3) -pz *pz);


International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 04 Issue: 05 | May -2017
www.irjet.net
p-ISSN: 2395-0072

\section*{5. RESULTS AND DISCUSSION}

Table-6: Comparison of Results
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Robot Configuration} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Angles } \\
\text { (input in } \\
\text { degrees ) }
\end{gathered}
\]} & \multicolumn{3}{|l|}{Method for Study of IK (output in degrees \({ }^{0}\) )} \\
\hline & & Algebraic & \begin{tabular}{l}
Robo \\
Analyser
\end{tabular} & MATLAB \\
\hline \multirow[t]{2}{*}{2R Configuration} & \(\theta 1=60\) & 59.99999863 & 60 & 60 \\
\hline & \(\theta 2=30\) & 30.00006631 & 30.0001 & 30.0001 \\
\hline \multirow{3}{*}{3R Configuration} & \(\theta 1=60\) & 59.9999938 & 60 & 60 \\
\hline & \(\theta 2=30\) & 30.00008634 & 30.0001 & 30.0001 \\
\hline & \(\theta 3=0\) & 0 & 0 & -0.00004 \\
\hline \multirow{4}{*}{\begin{tabular}{l}
\[
3 \mathrm{R}-1 \mathrm{P}
\] \\
Configuration
\end{tabular}} & \(\theta 1=60\) & 60.00002314 & 60 & 60.0450 \\
\hline & \(\theta 2=0\) & 0.0025 & 0 & 0.0960 \\
\hline & d3=100 & 100 & 100 & 100 \\
\hline & \(\theta 4=30\) & 29.99747686 & 30.0001 & 29.8590 \\
\hline \multirow{5}{*}{5R Configuration} & \(\theta 1=30\) & 30.000001692 & 30.0001 & 30.000 \\
\hline & \(\theta 2=-60\) & -59.99988837 & -59.999 & -59.9993 \\
\hline & \(\theta 3=90\) & 89.99974525 & 90 & 90.0001 \\
\hline & \(\theta 4=0\) & 0 & 0 & -0.0476 \\
\hline & \(\theta 5=45\) & 45 & 45 & 45 \\
\hline \multirow{6}{*}{6R Configuration} & \(\theta 1=60\) & 54.47287582 & 75.11463857 & 59.9929 \\
\hline & \(\theta 2=30\) & 29.99863678 & 46.3399-62.41i & 29.9945 \\
\hline & \(\theta 3=45\) & 45.00048521 & \(35.65+103.96 \mathrm{i}\) & 45.0106 \\
\hline & \(\theta 4=0\) & 0 & 0 & 0 \\
\hline & \(\theta 5=90\) & 90 & 90 & 90 \\
\hline & \(\theta 6=0\) & 0 & 0 & 0 \\
\hline
\end{tabular}

Table-7: Percentage Error in Calculation
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Robot Configuration} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Angles } \\
\text { (input in } \\
\text { degrees } \\
\text { ) }
\end{gathered}
\]} & \multicolumn{3}{|c|}{Percentage Error (in \%)} \\
\hline & & Algebraic & \begin{tabular}{l}
Robo \\
Analyser
\end{tabular} & MATLAB \\
\hline \multirow[t]{2}{*}{2R
Configuration} & \(\theta 1=60\) & \(2.28 * 10^{-6}\) & 0 & 0 \\
\hline & \(\theta 2=30\) & \(2.21 * 10^{-4}\) & \(3.33 * 10^{-4}\) & \(3.33 * 10^{-4}\) \\
\hline \multirow{3}{*}{\begin{tabular}{l}
3R \\
Configuration
\end{tabular}} & \(\theta 1=60\) & \(1.03 * 10^{-5}\) & 0 & 0 \\
\hline & \(\theta 2=30\) & \(2.878 * 10^{-4}\) & \(3.33 * 10^{-4}\) & \(3.33 * 10^{-4}\) \\
\hline & \(\theta 3=0\) & 0 & 0 & - \\
\hline \multirow{4}{*}{\begin{tabular}{l}
\[
3 \mathrm{R}-1 \mathrm{P}
\] \\
Configuration
\end{tabular}} & \(\theta 1=60\) & \(3.85 * 10^{-5}\) & 0 & 0.075 \\
\hline & \(\theta 2=0\) & - & 0 & - \\
\hline & d3=100 & 0 & 0 & 0 \\
\hline & \(\theta 4=30\) & \(8.41 * 10^{-3}\) & \(3.33 * 10^{-4}\) & 0.47 \\
\hline \multirow{5}{*}{\begin{tabular}{l}
\[
5 R
\] \\
Configuration
\end{tabular}} & \(\theta 1=30\) & \(5.64 * 10^{-6}\) & \(3.33 * 10^{-4}\) & 0 \\
\hline & \(\theta 2=-60\) & \(1.86 * 10^{-3}\) & \(1.67 * 10^{-3}\) & \(1.167 * 10^{-3}\) \\
\hline & \(\theta 3=90\) & \(2.83 * 10^{-4}\) & 0 & \(1.11 * 10^{-4}\) \\
\hline & \(\theta 4=0\) & 0 & 0 & - \\
\hline & \(\theta 5=45\) & 0 & 0 & 0 \\
\hline \multirow{6}{*}{6R Configuration} & \(\theta 1=60\) & 1.87*10-2 & 25.19 & 0.01183 \\
\hline & \(\theta 2=30\) & \(4.54 * 10^{-3}\) & 54.47-207.13i & 0.01833 \\
\hline & \(\theta 3=45\) & \(1.07 * 10^{-3}\) & 20.78+231.02i & \(1.078 * 10^{-3}\) \\
\hline & \(\theta 4=0\) & 0 & 0 & 0 \\
\hline & \(\theta 5=90\) & 0 & 0 & 0 \\
\hline & \(\theta 6=0\) & 0 & 0 & 0 \\
\hline
\end{tabular}

So from above Table it is imminent that there's a minute percentage error in calculations by all the three ways of studying inverse kinematics i.e. by algebraic method, using RoboAnalyser and using MATLAB. In most of the cases the results of RoboAnalyser and MATLAB are same as compared to algebraic method. The difference in algebraic method is mostly due to the fact that during calculations most of the values were approximated.

Also from above ways of studying IK and its output, it is clear that the simplicity level of studying inverse kinematics goes on increasing with increasing robot configuration.

\section*{6. CONCLUSION}

Since the forward kinematic analysis of any robot configuration is simple to do analysis of model and calculate the position using the joint angle, its study is not of much bother to us. However the greater challenge is to analyze the inverse kinematics solution of the robot configuration using the final position the robot. Thus the aim was to study complexity of the IK with increasing degrees of freedom.

So in the study this aim have been materialized by means of three ways for analyzing the inverse kinematics solution using algebraic method, using RoboAnalyser and using MATLAB. So the study of the complexity of various robot configurations with increasing degrees of freedom is done for robot configurations i.e. \(2 R, 3 R, 3 R-1 P, 5 R, 6 R\) where \(R\) and \(P\) stands for revolute and prismatic joints.

The results of these 3 methods suggests that the study of IK definitely is of complex nature for increased degrees of freedom. In other words, the results of algebraic method are validated with the outputs from RoboAnalyser and MATLAB.

\section*{REFERENCES}
[1] Serdar Kucuk and Zafer Bingul, Industrial Robotics: Theory, Modelling and Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006.
[2] Tarun Pratap Singh, Dr. P. Suresh, Dr. Swet Chandan, Forward and Inverse Kinematics Analysis of Robot Manipulators, International Research Journal of Engineering and Technology, Vol 4 Issue 2, February 2017.
[3] Ashitava Ghoshal, Kinematics of serial manipulators, Department of mechanical engineering, Indian Institute of Science, Bangalore.
[4] Sandipan Bandyopadhyay, Introduction to the inverse kinematics of serial manipulators, Department of Engineering Design, Indian Institute of Technology Madras, Chennai
[5] Manjunath T. C., Fundamentals of Robotics, Volume-1, 5th Edition, 2008, pp 126-175, 201-240.```

