
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3601

An Efficient Mining of Frequent Itemset Purchase on Retail Outlet

using Frequent Itemset Ultrametric Tree on Hadoop

Manasa N1, Venkatesh2, Hemanth Kumar N P3

1PG Student, Department of CSE, Alva’s Institute Of Engineering and Technology, Moodbidri, DK, India
2Associate Professor, Department of CSE, Alva’s Institute Of Engineering and Technology, Moodbidri, DK, India

3Assistant Professor, Department of CSE, Alva’s Institute Of Engineering and Technology, Moodbidri, DK, India
---***---

Abstract - Mining frequent itemset purchase in a retail
outlet is a very strenuous job. As extracting the frequently
occurring itemsets over a large heterogeneous database is a
core problem. Existing parallel mining algorithm for frequent
itemsets does not support automatic parallelization, load
balancing, synchronization and fault tolerance over a large
cluster. Hence as a solution to these problem, an improvised
algorithm called frequent itemset ultrametric tree algorithm
using MapReduce programming model on Hadoop is used.
Here in this technique, we implement three MapReduce jobs to
perform the mining task.

Key Words: Frequent Itemsets, Frequent Item
ultrametric Tre(FIUT), Hadoop, MapReduce, Hadoop
Distributed File System(HDFS).

1. INTRODUCTION

Finding out the frequent Item-sets in large heterogeneous
database is one of the core problem in data mining [1].
Existing data mining algorithm like Apriori [2] and FP-
growth [3] algorithm fails to extract frequent item-sets when
size of transactional database is too large to compute. Also
these traditional mining algorithms were running only on
single machine which results in performance deterioration

Apriori is a bottom-up, breadth-first search algorithm. It
uses hash trees to store frequent itemsets and candidate
frequent itemsets. This classic Apriori- like parallel FIM
algorithm uses generate and test process that generates a
large number of candidate itemsets. The major disadvantage
of Apriori-like FIM algorithm is that the processor has to
repeatedly scan the entire database. To reduce the time
taken for scanning entire database multiple times, an
approach called FP-growth algorithm was introduced.
Though FP-growth algorithm addresses the scalability
problem it fails to construct in-memory FP trees to
accommodate large-scale database. Hence rather than
considering Apriori and FP-growth algorithm we
incorporate a new frequent itemset mining algorithm called
Frequent itemset ultrametric tree(FIU-tree) [4]. This FIUT
algorithm is mainly used because of its advantageous
features like, reduced i/o overhead, natural way of
partitioning a dataset, compressed storage and avoids
recursive traverse. Most importantly it enables automatic

parallelization, load balancing, data distribution and fault
tolerance over a large cluster. This FIUT algorithm is
designed over MapReduce programming model [5]. Hence
FIUT on Hadoop has got many distinctive features.

The MapReduce framework on Hadoop [6] enables
distributed processing of huge data on large clusters,
provided with good scalability, robust and fault tolerance.
FIUT running on this framework is described by two major
functions map and reduce. The mapper independently and
concurrently decompose itemsets and on otherhand reducer
function aggregates all the values by constructing small
ultrametric trees as well as mining these trees in parallel.
Industries utilize these extracted frequent itemsets in
decision making about the products. If a retail sector
company wants to know about the customer nature, their
buying habits and about the product which is on demand this
FIUT mining technique on Hadoop helps them to do so in
very efficient way, in turn it increases their profit indeed. [7].

2. BACKGROUND STUDY

Hadoop is an open source software framework used for
distributed storage and to develop data processing
applications which are executed on those distributed
computing environment where huge data sets are distributed
across nodes in a cluster. Their main characteristic is to
partition the data and computes it over large cluster of nodes.
Hadoop includes various components such as Hadoop
Distributed File System (HDFS), MapReduce, Hbase, HCatalog,
Pig, Hive, Oozie, ZooKeeper, Kafka, and Mahout [5]. HDFS has
become a key tool for managing pools of huge data and
supports big data analytics application.

2.1 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is designed for
storing very large files with streaming data access patterns
running on clusters of commodity hardware. Hadoop
Distributed File System stores data to provide high aggregate
I/O bandwidth [8]. HDFS stores filesystem metadata and
application data separately where metadata is stored on a
dedicated server called Namenode and application data are
stored on other servers called DataNodes.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3602

2.2 MAPREDUCE FRAMEWORK

MapReduce programming model is an associated
implementation for processing and generating massive
information sets with parallel, distributed algorithm rule on a
cluster. Also this MapReduce programming model is an
generic processing model that is used to address the general
application problems. MapReduce computation can be seen is
two phases, Map phase and Reduce Phases. During the Map
section, the large input file is split into number of splits for
analysis by map tasks running in parallel across the Hadoop
cluster. By default, the MapReduce framework gets the input
file from the Hadoop Distributed File System. The Reduce
Phase aggregates all the values obtained from the Map task
and generates a single output value. FIG- 1 shows the logical
data flow in MapReduce. MapReduce greatly improves
programmability by offering automatic data management,
highly scalable, load balancing and fault tolerant processing.

Table -1: Symbol and Annotations

Symbol Annotation

Minthresh User-specified Minimum threshold value

k-itemsets Itemsets containing k items

k-FIU-tree FIU-tree constructed by all k-itemsets

Max The maximum value of k

ISm Itemsets in which the length of each itemset is m

Input Data

Map() Map() Map()

Reduce() Reduce()

Output Data

Split

Shuffling

Fig -1: Data flow in MapReduce programming
model

3. IMPLEMENTATION- FIUT ON HADOOP

The implementation of FIUT algorithm (see
Algorithm 1) on Hadoop mainly targets to extract
frequent item-sets. The Process constitutes of
uploading the invoice input datasets obtained from
the retail outlets in to the hadoop, preprocessing
those inputs before uploading process and then

applying the FIUT algorithm and generating the
frequent itemsets.the architectural overview is
depicted in the FIG 2. The FIUT algorithm consists
of two mainly phases within two scans of database
D. The phase one starts by computing the threshold
value for all the items in the database. Later,
Pruning technique is implemented to remove all
infrequent items and remaining frequent items are
used to generate k-itemset, where number of
frequent items of a transaction is k in a database.
Hence at the end of the phase one, all the frequent
one-itemsets are generated. In phase two, small
ultrametric tree are constructed repeatedly (see
Algorithm 1(a) and 1(b).)

In this method to filter out the unrequired item-sets,
we implement two methods namely Mapper and
Reducer methods. Mapper sends all local frequent
patterns whereas Reducer aggregates all the local
frequent item-sets and calculates its number of
occurrences. For those items which fail to reach the
minimum threshold value, Reducer prunes them
and keeps the remaining item-sets as the final
outcome. This FIUT on Hadoop consists of three
MapReduce jobs.

Data Admin

Upload process

Frequent-Item Process

Hadoop Job FIU-Tree

HDFS Frequent-Item

Preprocessing

 Fig -2: System Architecture of Proposed System

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3603

Algorithm 1 FIUT

ALGORITHM 1(A): FIUT(D, n)
Begin
1. h-itemsets = k-itemsets generation(D, Minthresh);
2. for k = Max down to 2 do {
3. k-FIU-tree = k-FIU-tree generation (h-itemsets);
4. frequent k-itemsets Lk = frequent k-itemsets
generation (k- FIUtree);
5. }
 End

ALGORITHM 1(B): K-FIU-TREE GENERATION((h-
itemsets))
Begin
1. Create the root of a k-FIU-tree, and label it as null
(temporary 0th root)
2. for all (k + 1 ≤ h ≤ Max) do
3. decompose each h-itemset into all possible k-itemsets,
and union original k-itemsets;
4. for all (k-itemset) do
5. ... build k-FIU-tree(); here, pseudo code is omitted;
6. end for
7. end for
End

Algorithm 2 First MapReduce Job: To Generate All

Frequent One- Itemsets

Input: Minthresh, DBi;
Output: 1-itemsets;
1. function MAP(key offset, values DBi)
2. //T is the transaction in DBi
3. for all T do
4. items ← split each T;
5. for all item in items do
6. output(item, 1);
7. end for
8. end for
9. end function

1. reduce input: (item,1)
2. function REDUCE(key item, values 1)
3. sum=0;
4. for all item do
5. sum += 1;
6. end for
7. output(1-itemset, sum); //item is stored as 1-itemset
8. if sum ≥ Minthresh then
9. F − list ← the (1-itemset, sum) //F-list is a
CacheFile storing
 frequent 1-itemsets and their count.
10. end if
11. end function

3.1 First MapReduce Job

The first MapReduce job identifies all frequent items or
frequent one-itemsets. In this phase, the input of Map tasks
is all frequent one-itemsets. Here, the transaction database is
divided into many input files stored in HDFS across data
nodes of a Hadoop Cluster. Here each mapper linearly reads
each transaction from its local input split. The mapper
calculates the number of occurrence of items and generates
local one-itemsets. In turn these one-itemsets with the same
key which is emitted by a different mapper are sorted and
merged in a specific reducer. This reducer further produces
the global one-itemsets. At last, the items which cannot meet
the minimum threshold value are pruned off and
accordingly, global frequent one itemsets are generated. The
local file named F-list stores all frequent one-itemsets and
their counts which in turn becomes the input to the second
MapReduce job. Algorithm 2 illustrates the first MapReduce
job in detail.

3.2 Second MapReduce Job

The second MapReduce job scans the datasets to generate k-
itemsets by pruning the infrequent items in each transaction.
This second MapReduce task applies a second round of
scanning on the datasets to remove the infrequent items from
each transaction data. The second job identifies the itemset as
a k-itemset if it contains k frequent items. Here each mapper
intake the transaction record and emits the itemsets with its
count. These itemsets and its count are combined and
shuffled which in turn fed as input to the reducer phase. After
completion of the combination operation, each reducer will
count. These itemsets and its count are combined and
shuffled which in turn fed as input to the reducer phase. After
completion of the combination operation, each reducer will
emit the itemset and its count in terms of key/value pair. The
pseudocode of second MapReduce job is Algorithm 3.

3.3 Third MapReduce Job

The MapReduce job is the most computational one which
constructs k-FIU tree and mines all frequent k-itemsets. The
main task of this third MapReduce job is to decompose the
itemset, construct the k-FIU trees and to mine the frequent
itemset [4]. The task of each mapper is to decompose each
k-itemset in to a list of small-sized sets, which is obtained by
the second MapReduce job and to construct an FIU tree by
merging all decomposed results of same length. In this third
MapReduce job, each mapper is independent of itself; many
mapper can perform the decomposition process in parallel.
The Map function of this job produce a number of items in an
itemset along with an FIU tree that consists of leaf nodes and
nonleaf nodes where nonleaf nodes consists of item name
and node link, leaf nodes consists of item name and its
support. The Reducer constructs k2-FIU-tree and mines all
frequent itemsets only by checking the count value of leaf
node in the k-2-FIU tree without traversing the tree
recursively. An algorithm 4 depicts the Map and Reduce
functions of third MapReduce job.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3604

Algorithm 3 Second MapReduce Job: To Generate All k-
Items by Pruning the Original Database

Input: Minthresh, DBi;
Output: k-itemsets;
1. function MAP(key offset, values DBi)
2. //T is the transaction in DBi
3. for all (T) do
4. items ← split each T;
5. for all (item in items) do
6. if (item is not frequent) then
7 prune the item in the T;
8. end if
9. k-itemset ←(k, itemset) /*itemset is the set of
frequent items
 after pruning, whose length is k */
10. output(k-itemset,1);
11. end for
12. end for
13. end function

1. function REDUCE(key k-itemset, values 1)
2. sum=0;
3. for all (k-itemset) do
4. sum += 1;

5. end for

6. output(k, k-itemset+sum);//sum is support of this

itemset

7. end function

Algorithm 4 Third MapReduce Job: To Mine All
frequent Itemsets

 Input: Pair(k, k-itemset+support);//This is the output of the second
 MapReduce.

 Output: frequent k-itemsets;

1. function MAP(key k, values k-itemset+support)
2. De-itemset ← values.k-itemset;
3. decompose(De-itemset,2,mapresult); /* To
decompose each Deitemset into t-itemsets (t is from 2 to
De-itemset.length), and store the results to mapresult. */
4. for all (mapresult with different item length) do
5. // t-itemset is the results decomposed by k-
itemset(i.e. t ≤ k);
6. for all (t-itemset) do
7. t − FIU − tree ← t-FIU-tree generation(local-FIU-
tree, t-itemset);
8. output(t, t-FIU-tree);
9. end for
10. end for
11. end function

1. function REDUCE(key t, values t-FIU-tree)
2. for all (t-FIU-tree) do
3. t − FIU − tree ← combining all t-FIU-tree from
each mapper;

4. for all (each leaf with item name v in t-FIU-tree)
do
5. if (count(v)/| DB |≥ Minthresh) then
6. frequent h − itemset ← pathitem(v);
7. end if
8. end for
9. end for
10. output(h, frequent h-itemset);
11. end function

4. CONCLUSIONS

To solve the problems of existing parallel mining algorithm

for accessing the frequent itemset purchase in retail outlets,

We applied a new technique of Mapreduce programming

model to develop a parallel frequent itemsets mining

algorithm called Frequent Itemset ultrametric tree

implemented on Hadoop cluster. This method incorporates

three MapReduce jobs to complete the parallel mining of

frequent itemsets. The data is collected from UCI datasets

which are preprocessed and uploaded into Hadoop .When

frequent itemsets mining algorithm is invoked, the datasets

are fetched from Hadoop and mining algorithms are

processed on data and produced frequent itemsets. FIUT on

hadoop has been dedicated to produce an accurate data

mining results under Hadoop cluster environment.

REFERENCES

[1] C.Borgelt, “Frequent item set mining”, wiley

intersisciplinary Reviews: Data Mining and Knowledg
Discovery, vol. 2, pp. 437-456, 2012.

[2] R. Agrawal, T. Imieli´nski, and A. Swami, “Mining
association rules between sets of items in large
databases,” ACM SIGMOD Rec., vol. 22, no. 2, pp. 207–
216, 1993.

[3] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent
patterns with- out candidate generation: A frequent
tree approach, “Data Min. Knowl. Disc., vol. 8, no. 1, pp.
53–87, 2004.

[4] Y.-J. Tsay, T.-J. Hsu, and J.-R. Yu, “ FIUT: A new method
for mining frequent itemsets,” Inf. Sci., vol. 179, no. 11,
pp. 1724–1737, 2009.

[5] J. Xie, et al., “ Improving mapreduce performance
through data placement in heterogeneous hadoop
cluster”, in parallel and distributed processing,
Workshops and Phd Forum (IPDPSW), 2010 IEEE
Internatioinal Symposium on, 2010, pp. 1-9.

[6] T. White, Hadoop: The definitive guide: “O`Reilly Media,
Inc.”, 2012.

[7] P. Zikopoulos and C. Eaton, Understanding big data:
Analytics for enterprise class hadoop and streaming
data: McGraw-Hill Osborne Media, 2011.

[8] M Bhandarkar, “MapReduce programming with apache
Hadoop, “in Parallel & Distributed Processing(IPDPS),
2010 IEEE International Symposium on, 2010, pp. 1-1.

