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Abstract - Mining frequent itemset purchase in a retail 
outlet is a very strenuous job. As extracting the frequently 
occurring itemsets over a large heterogeneous database is a 
core problem. Existing parallel mining algorithm for frequent 
itemsets does not support automatic parallelization, load 
balancing, synchronization and fault tolerance over a large 
cluster. Hence as a solution to these problem, an improvised 
algorithm called frequent itemset ultrametric tree algorithm 
using MapReduce programming model on Hadoop is used.  
Here in this technique, we implement three MapReduce jobs to 
perform the mining task. 
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1. INTRODUCTION 
 

Finding out the frequent Item-sets in large heterogeneous 
database is one of the core problem in data mining [1]. 
Existing data mining algorithm like Apriori [2] and FP-
growth [3] algorithm fails to extract frequent item-sets when 
size of transactional database is too large to compute. Also 
these traditional mining algorithms were running only on 
single machine which results in performance deterioration  

Apriori is a bottom-up, breadth-first search algorithm. It 
uses hash trees to store frequent itemsets and candidate 
frequent itemsets. This classic Apriori- like parallel FIM 
algorithm uses generate and test process that generates a 
large number of candidate itemsets. The major disadvantage 
of Apriori-like FIM algorithm is that the processor has to 
repeatedly scan the entire database. To reduce the time 
taken for scanning entire database multiple times, an 
approach called FP-growth algorithm was introduced. 
Though FP-growth algorithm addresses the scalability 
problem it fails to construct in-memory FP trees to 
accommodate large-scale database. Hence rather than 
considering Apriori and FP-growth algorithm we 
incorporate a new frequent itemset mining algorithm called 
Frequent itemset ultrametric tree(FIU-tree) [4]. This FIUT 
algorithm is mainly used because of its advantageous 
features like, reduced i/o overhead, natural way of 
partitioning a dataset, compressed storage and avoids 
recursive traverse. Most importantly it enables automatic 

parallelization, load balancing, data distribution and fault 
tolerance over a large cluster. This FIUT algorithm is 
designed over MapReduce programming model [5]. Hence 
FIUT on Hadoop has got many distinctive features.  
 
The MapReduce framework on Hadoop [6] enables 
distributed processing of huge data on large clusters, 
provided with good scalability, robust and fault tolerance. 
FIUT running on this framework is described by two major 
functions map and reduce. The mapper independently and 
concurrently decompose itemsets and on otherhand reducer 
function aggregates all the values by constructing small 
ultrametric trees as well as mining these trees  in parallel. 
Industries utilize these extracted frequent itemsets in 
decision making about the products. If a retail sector 
company wants to know about the customer nature, their 
buying habits and about the product which is on demand this 
FIUT mining technique on Hadoop helps them to do so in 
very efficient way, in turn it increases their profit indeed. [7]. 
 

2. BACKGROUND STUDY 
 
Hadoop is an open source software framework used for 
distributed storage and to develop data processing 
applications which are executed on those distributed 
computing environment where huge data sets are distributed 
across nodes in a cluster. Their main characteristic is to 
partition the data and computes it over large cluster of nodes. 
Hadoop includes various components such as Hadoop 
Distributed File System (HDFS), MapReduce, Hbase, HCatalog, 
Pig, Hive, Oozie, ZooKeeper, Kafka, and Mahout [5]. HDFS has 
become a key tool for managing pools of huge data and 
supports big data analytics application. 

2.1 Hadoop Distributed File System 

The Hadoop Distributed File System (HDFS) is designed for 
storing very large files with streaming data access patterns 
running on clusters of commodity hardware. Hadoop 
Distributed File System stores data to provide high aggregate 
I/O bandwidth [8]. HDFS stores filesystem metadata and 
application data separately where metadata is stored on a 
dedicated server called Namenode and application data are 
stored on other servers called DataNodes.  
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2.2 MAPREDUCE FRAMEWORK 

MapReduce programming model is an associated 
implementation for processing and generating massive 
information sets with parallel, distributed algorithm rule on a 
cluster. Also this MapReduce programming model is an 
generic processing model that is used to address the general 
application problems. MapReduce computation can be seen is 
two phases, Map phase and Reduce Phases. During the Map 
section, the large input file is split into number of  splits for 
analysis by map tasks running in parallel across the Hadoop 
cluster. By default, the MapReduce framework gets the input 
file  from the Hadoop Distributed File System. The Reduce 
Phase aggregates all the values obtained from the Map task 
and generates a single output value. FIG- 1 shows the logical 
data flow in MapReduce. MapReduce greatly improves 
programmability by offering automatic data management, 
highly scalable, load balancing and fault tolerant processing.  

Table -1: Symbol and Annotations 
 

 

Symbol Annotation 

Minthresh User-specified Minimum threshold value 

k-itemsets Itemsets containing k items 

k-FIU-tree FIU-tree constructed by all k-itemsets 

Max The maximum value of k 

ISm Itemsets in which the length of each itemset is m 
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Fig -1: Data flow in MapReduce programming 
model 

 

 
 

  

3. IMPLEMENTATION- FIUT ON HADOOP 
 
The implementation of FIUT algorithm (see 
Algorithm 1) on Hadoop mainly targets to extract 
frequent item-sets. The Process constitutes of 
uploading the invoice input datasets obtained from 
the retail outlets in to the hadoop, preprocessing 
those inputs before uploading process and then  

 
 

 

applying the FIUT algorithm and generating the 
frequent itemsets.the architectural overview is 
depicted in the FIG 2. The FIUT algorithm consists 
of two mainly phases within two scans of database 
D. The phase one starts by computing the threshold 
value for all the items in the database. Later, 
Pruning technique is implemented to remove all 
infrequent items and remaining frequent items are 
used to generate k-itemset, where number of 
frequent items of a transaction is k in a database. 
Hence at the end of the phase one, all the frequent 
one-itemsets are generated. In phase two, small 
ultrametric tree are constructed repeatedly (see 
Algorithm 1(a) and 1(b).) 
 

In this method to filter out the unrequired item-sets, 
we implement two methods namely Mapper and 
Reducer methods. Mapper sends all local frequent 
patterns whereas Reducer aggregates all the local 
frequent item-sets and calculates its number of 
occurrences. For those items which fail to reach the 
minimum threshold value, Reducer prunes them 
and keeps the remaining item-sets as the final 
outcome. This FIUT on Hadoop consists of three 
MapReduce jobs. 
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        Fig -2: System Architecture of Proposed System 
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Algorithm 1 FIUT 

ALGORITHM 1(A): FIUT( D, n) 
Begin 
1.      h-itemsets = k-itemsets generation(D, Minthresh); 
2.      for k = Max down to 2 do { 
3.            k-FIU-tree = k-FIU-tree generation (h-itemsets); 
4.            frequent k-itemsets Lk = frequent k-itemsets 
generation (k-                FIUtree); 
5.       } 
 End 
 
ALGORITHM 1(B): K-FIU-TREE GENERATION((h-
itemsets)) 
Begin 
1. Create the root of a k-FIU-tree, and label it as null 
(temporary 0th root) 
2.   for all (k + 1 ≤ h ≤ Max) do 
3.    decompose each h-itemset into all possible k-itemsets,                  
and union original k-itemsets; 
4.         for all (k-itemset) do 
5.        ... build k-FIU-tree( ); here, pseudo code is omitted; 
6.         end for 
7.    end for 
End 

 
Algorithm 2  First MapReduce Job: To Generate All 

Frequent One- Itemsets 

Input: Minthresh, DBi; 
Output: 1-itemsets; 
1. function MAP(key offset, values DBi) 
2. //T is the transaction in DBi 
3.     for all T do 
4.        items ← split each T; 
5.        for all item in items do 
6.             output( item, 1); 
7.         end for 
8.    end for 
9. end function 
 

1.  reduce input: (item,1 ) 
2.  function REDUCE(key item, values 1) 
3.       sum=0; 
4.       for all item do 
5.             sum += 1; 
6.       end for 
7.       output(1-itemset, sum); //item is stored as 1-itemset 
8.       if sum ≥ Minthresh then 
9.           F − list ← the (1-itemset, sum) //F-list is a 
CacheFile storing 
              frequent 1-itemsets and their count. 
10.     end if 
11. end function 
 
 

 

3.1 First MapReduce Job 

The first MapReduce job identifies all frequent items or 
frequent one-itemsets. In this phase, the input of Map tasks 
is all frequent one-itemsets. Here, the transaction database is 
divided into many input files stored in HDFS across data 
nodes of a Hadoop Cluster. Here each mapper linearly reads 
each transaction from its local input split. The mapper 
calculates the number of occurrence of items and generates 
local one-itemsets. In turn these one-itemsets with the same 
key which is emitted by a different mapper are sorted and 
merged in a specific reducer. This reducer further produces 
the global one-itemsets. At last, the items which cannot meet 
the minimum threshold value are pruned off and 
accordingly, global frequent one itemsets are generated. The 
local file named F-list stores all frequent one-itemsets and 
their counts which in turn becomes the input to the second 
MapReduce job. Algorithm 2 illustrates the first MapReduce 
job in detail. 
 

3.2 Second MapReduce Job 

The second MapReduce job scans the datasets to generate k-
itemsets by pruning the infrequent items in each transaction. 
This second MapReduce task applies a second round of 
scanning on the datasets to remove the infrequent items from 
each transaction data. The second job identifies the itemset as 
a k-itemset if it contains k frequent items. Here each mapper 
intake the transaction record and emits the itemsets with its 
count. These itemsets and its count are combined and 
shuffled which in turn fed as input to the reducer phase. After 
completion of the combination operation, each reducer will 
count. These itemsets and its count are combined and 
shuffled which in turn fed as input to the reducer phase. After 
completion of the combination operation, each reducer will 
emit the itemset and its count in terms of key/value pair. The 
pseudocode of second MapReduce job is Algorithm 3. 

3.3 Third MapReduce Job 

The MapReduce job is the most computational one which 
constructs k-FIU tree and mines all frequent k-itemsets. The 
main task of this third MapReduce job is to decompose the 
itemset, construct the k-FIU trees and to mine the frequent 
itemset [4]. The task of each mapper  is to decompose each 
k-itemset  in to a list of small-sized sets, which is obtained by 
the second MapReduce job and to construct an FIU tree by 
merging all decomposed results of same length. In this third 
MapReduce job, each mapper is independent of itself; many 
mapper can perform the decomposition process in parallel. 
The Map function of this job produce a number of items in an 
itemset along with an FIU tree that consists of leaf nodes and 
nonleaf nodes where nonleaf nodes consists of item name 
and node link, leaf nodes consists of item name and its 
support. The Reducer constructs k2-FIU-tree and mines all 
frequent itemsets only by checking the count value of leaf 
node in the k-2-FIU tree without traversing the tree 
recursively. An algorithm 4 depicts the Map and Reduce 
functions of third MapReduce job. 
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Algorithm 3 Second MapReduce Job: To Generate All k-
Items by Pruning the Original Database  

Input: Minthresh, DBi; 
Output: k-itemsets; 
1.  function MAP(key offset, values DBi) 
2.      //T is the transaction in DBi 
3.     for all (T) do 
4.            items ← split each T; 
5.            for all (item in items) do 
6.               if (item is not frequent) then 
7                    prune the item in the T; 
8.            end if 
9.            k-itemset ←(k, itemset) /*itemset is the set of 
frequent items 
               after pruning, whose length is k */ 
10.         output(k-itemset,1); 
11.         end for 
12.      end for 
13.  end function 
 
1.   function REDUCE(key k-itemset, values 1) 
2.        sum=0; 
3.        for all (k-itemset) do 
4.              sum += 1; 

5.        end for 

6.      output(k, k-itemset+sum);//sum is support of this 

itemset 

7.   end function 
 

Algorithm 4 Third MapReduce Job: To Mine All 
frequent Itemsets 

    Input: Pair(k, k-itemset+support);//This is the output of the second  
                  MapReduce. 

    Output: frequent k-itemsets; 

1.  function MAP(key k, values k-itemset+support) 
2.        De-itemset ← values.k-itemset; 
3.        decompose(De-itemset,2,mapresult); /* To                                  
decompose each Deitemset into t-itemsets (t is from 2 to 
De-itemset.length), and store the results to mapresult. */ 
4.       for all (mapresult with different item length) do 
5.           // t-itemset is the results decomposed by k-
itemset(i.e. t ≤ k); 
6.            for all ( t-itemset ) do 
7.               t − FIU − tree ← t-FIU-tree generation(local-FIU-
tree, t-itemset); 
8.                  output(t, t-FIU-tree); 
9.             end for 
10.      end for 
11.  end function 
 

1.   function REDUCE(key t, values t-FIU-tree) 
2.       for all (t-FIU-tree) do 
3.              t − FIU − tree ← combining all t-FIU-tree from 
each                        mapper; 

4.              for all (each leaf with item name v in t-FIU-tree) 
do 
5.                     if ( count(v)/| DB |≥ Minthresh ) then 
6.                        frequent h − itemset ← pathitem(v); 
7.                      end if 
8.               end for 
9.        end for 
10.   output( h, frequent h-itemset); 
11. end function 
  

4. CONCLUSIONS 
 
To solve the problems of existing parallel mining algorithm 

for accessing the frequent itemset purchase in retail outlets, 

We applied a new technique of Mapreduce programming 

model to develop a parallel frequent itemsets mining 

algorithm called Frequent Itemset ultrametric tree 

implemented on Hadoop cluster. This method incorporates 

three MapReduce jobs to complete the parallel mining of 

frequent itemsets. The data is collected from UCI datasets 

which are preprocessed and uploaded into Hadoop .When 

frequent itemsets mining algorithm is invoked, the datasets 

are fetched from Hadoop and mining algorithms are 

processed on data and produced frequent itemsets. FIUT on 

hadoop has been dedicated to produce an accurate data 

mining results under Hadoop cluster environment. 
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