
          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 04 Issue: 04 | Apr -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |       Page 3419 
 

µ-Smart 

Rohit U Shetty 1, Dheemanth B M 2, Vishal H 3, Bhargav V 4, Anand Srivatsa 5 

Department of Electronics & Communication Engineering 

The National Institute of Engineering, Mysuru 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - µSmart is a quasi smart watch running on 
Atmega16 and esp8266. This project contains base firmware 
for pseudo-kernel and infrastructure to build your own apps 
on µsmart!. µSmart gives you an infrastructure where you can 
write your own apps on this hardware. (like multimeter on 
watch, your own small game, a calculator etc, also has wireless 
capability) µSmart contains a monochrome Nokia 5110 
screen, user interface consisting of small joystick and press 
buttons, RTC DS1307, LM35 and ESP8266 for wireless 
communication. 

 
Key Words:  AVR, ESP8266 ,MQTT, RTC. 
 

1. INTRODUCTION  
 

A plethora of smart watches have been introduced into the 
market like I-watch, moto 360 and pebble. But unfortunately, 
we cannot tweak the source code to define our own custom 
applications. µSmart provides a software-hardware 
framework for the developers to model their own 
applications such as accessing a database for some lookup 
table, designing a game, controlling home automation, 
accessing a remote network to send a initiate a task etc to be 
embedded in the code memory space of watch. A user-
friendly interface is developed to register the applications, 
secure protocol is implemented using MQTT broker, Internet 
connectivity is achieved via ESP8266 module and cloud 
integration is an added advantage. A pseudo structure is as 
follows: 

 
Fig 1.1 Structure of the prototype 

 

 
 

2. INTERFACING AVR WITH REAL TIME CLOCK 
 
The DS1307 serial real-time clock (RTC) is a low power, full 

binary-coded decimal (BCD) clock/calendar plus 56 bytes of 

NV SRAM. Address and data are transferred serially through 

an I2C, bidirectional bus. The clock/calendar provides 

seconds, minutes, hours, day, date, month, and year 

information. The end of the month date is automatically 

adjusted for months with fewer than 31 days, including 

corrections for leap year. The clock operates in either the 24-

hour or 12hour format with AM/PM indicator. The DS1307 

has a built-in power-sense circuit that detects power failures 

and automatically switches to the backup supply.  

2.1 Data Transfer Between Microcontroller and 
RTC: 

 

Fig 2.1 Interfacing between RTC and microcontroller 

 
Fig 2.2 Data transfer on the I2C bus. 

 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 04 Issue: 04 | Apr -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |       Page 3420 
 

The DS1307 can operate in the following two modes:   

A. Slave Receiver Mode (Write Mode): Serial data and 

clock are received through SDA and SCL. After each byte is 

received an acknowledge bit is transmitted. START and STOP 

conditions are recognized as the beginning and end of a 

serial transfer. Hardware performs address recognition after 

reception of the slave address and direction bit. The slave 

address byte is the first byte received after the master 

generates the START condition. The slave address byte 

contains the 7-bit DS1307 address, which is 1101000, 

followed by the direction bit (R/W), which for a write is 0. 

After receiving and decoding the slave address byte, the 

DS1307 outputs an acknowledge on SDA. After the DS1307 

acknowledges the slave address + write bit, the master 

transmits a word address to the DS1307. This sets the 

register pointer on the DS1307, with the DS1307 

acknowledging the transfer. The master can then transmit 

zero or more bytes of data with the DS1307 acknowledging 

each byte received. The register pointer automatically 

increments after each data byte are written. The master will 

generate a STOP condition to terminate the data write.  

B. Slave Transmitter Mode (Read Mode): The first byte is 

received and handled as in the slave receiver mode. 

However, in this mode, the direction bit will indicate that the 

transfer direction is reversed. The DS1307 transmits serial 

data on SDA while the serial clock is input on SCL. START and 

STOP conditions are recognized as the beginning and end of a 

serial transfer .The slave address byte is the first byte 

received after the START condition is generated by the 

master. The slave address byte contains the 7-bit DS1307 

address, which is 1101000, followed by the direction bit 

(R/W), which is 1 for a read. After receiving and decoding the 

slave address the DS1307 outputs an acknowledge on SDA. 

The DS1307 then begins to transmit data starting with the 

register address pointed to by the register pointer. If the 

register pointer is not written to before the initiation of a 

read mode the first address that is read is the last one stored 

in the register pointer. The register pointer automatically 

increments after each byte are read. The DS1307 must 

receive a Not Acknowledge to end a read. 

2.2 Utilities to handle the data transfer: 

To set the time for RTC, the utility is RTCset( char * data). It 

takes in a character string with the format 

“hours:minutes:seconds:day:day of month:month:year”. For 

example to set the hour as 8 AM and some arbitrary date, we 

can send the character string as RTCset(“8841001140516”). 

Using the parameter, We fetch each value and convert them 

into integers by unwrapping their ASCII value is as follows:  

(((data[0]-48)<<4)|(data[1]-48)) /*for hours, similar thing is 

carried out for other parameters*/. What happens in the 

above case is data[0] points to character ‘8’ whose ASCII 

value is 56. In order to convert it back to integer value, the 

ASCII value equivalent to ‘0’ character i,e 48 is subtracted 

yielding the value 8. Same thing is carried out on data[1] 

value. The data[0] is actually sent for configuration of storage 

and part of actual data and data[1] refers to other part of 

data. After shifting and carrying out the OR operation data 

stored in binary will be as 10001000. The MSB is clock 

oscillator enable bit, followed by bit which indicates whether 

the RTC time should be in 12/24 hour format. 0 indicates 12 

hour and 1 indicates 24 hour format. This is followed by 

AM/PM indication for 12 hour format and 10 hour bit to 

indicate the higher data nibble for 24 hour format as data is 

stored in BCD format in the RTC memory. Bit 4 is used to 

indicate the higher data nibble for 12 hour format. The bits 

from 0 to 3 are used to indicate the lower data nibble for 12 

hour format. This data is then sent via I2C bus. The inverse 

utility to continuously read data from RTC is RTCRead(char * 

data), which reads the data byte to the memory pointed by 

data parameter. Here until the last byte, data is read with 

acknowledge and a non-acknowledgement is sent by the 

master after last byte indicating termination for data stream 

transfer. Each time the data is read to a temporary variable 

from I2C bus. The higher nibble is retrieved by right shifting 

the data bits 4 times and adding the value 48 to bring it back 

to ASCII value in order to display it on the screen. The lower 

nibble is fetched by masking and adding 48 to obtain the 

same objective. 

temp=readACK(); data[index]=(temp>>4)+48; 

data[index+1]=(temp& 00001111)+48; /* pseudo code for 

obtaining the data in the suitable format*/ 

The formula for setting the master clock rate is as follows: 

CPU_CLK_FREQUENCY/16+2(TWBR)*4^TWPS. TWBR is the 

value of TWI bit rate register and TWPS is value of pre-scalar 

bits in TWI status register. 

3. INTERFACING AVR WITH NOKIA 5510 SCREEN 
 
The PCD8544 is a low power CMOS LCD controller/driver, 

designed to drive a graphic display of 48 rows and 84 

columns. All necessary functions for the display are provided 

in a single chip, including on-chip generation of LCD supply 

and bias voltages, resulting in a minimum of external 

components and low power consumption. The PCD8544 

interfaces to microcontrollers through a serial bus interface. 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 04 Issue: 04 | Apr -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |       Page 3421 
 

The PCD8544 is manufactured in n-well CMOS technology. 

The DDRAM is a 48 × 84 bit static RAM which stores the 

display data. The RAM is divided into six banks of 84 bytes (6 

× 8 × 84 bits).Each character is made to occupy 5*8 matrix 

bits. A constant array is defined which contains the display 

data format of 96 characters, where each character occupies 

5 bytes of data. For example { 0x7e,0x11,0x11,0x11,0x7e} 

represents ‘A’. 0x7e is written at a particular co-ordinate, so 

the subsequent bye 0x11 is written at the next row relative 

to the column of the first byte. 

 

Fig 3.1 Transmission of multiple bytes via SPI bus. 

3.1 Utilities to handle the Initialization, formatting 

data and data transfer 

The brightness of the screen is controlled by a duty cycle, for 

which we make use of the PWM module in the AVR. Fast 

PWM in inverted mode is made use of at pre-scaler set to 64. 

The set_dutycycle(unit_8) utility takes in a byte as a 

parameter and assigns it to OCR0 register. The count is made 

using the timer till the value matches the OCR0 and as soon 

as it reaches the voltage is inverted relative to it’s previous 

extreme. 

When the D/C’ pin is set to 1 , the incoming data is treated as 

data and when it is set to 0 it is treated as instruction. Four 

different display modes available i,e blank(0x00), all 

on(0x01),normal(0x04) and inverse(0x05).These can 

accessed by OR operation with DISPLAY_CONTROL generic 

code (0x08) and sent via SPI Bus. Send_command(unit_8) 

and send_data(unit_8) share the same piece of code i.e. 

selecting the slave and sending the data except manipulating 

the D/C’ pin to make the driver interpret whether incoming 

data is actual data or instruction. 

The render_sentence_xy(char *,unit_8,unit_8) utility renders 

a specific sentence at the particular x and y coordinates given 

by the user. This first calls the set_cursor_bank(unit_8,unit_8) 

function which selects the appropriate display bank and 

points the location at which the sentence need to be 

displayed. This is achieved by OR operation of x co-ordinate 

with 0x40 and of y co-ordinate with 0x80, because screen 

consists of 48 rows and 84 columns and finally sending them 

as commands. After this each character in the sentence is 

rendered from the lookup table i,e the constant array till a 

null character is encountered. For each character the 

essential 5 bytes is sent to the driver as data. 

4. NAVIGATION AND INPUTS 
 
A joystick is made use for navigation who’s four orientation 

is mapped to four pins of AVR microcontroller and is 

complemented with two other switches for selecting and de-

selecting/back operation. To counter the debouncing issue, 

the switch state validation routine is made to run each time a 

timer interrupt occurs due to overflow. The prescaler is set 

256. Timer2 which is of 8 bit is made use of this purpose. The 

MAX_DEBOUNCE value is set as constant, and a counter 

variable is assigned to each pin which increments if the 

condition of momentary pressed is met. When the counter 

reaches its max debounce value, the pin’s input is considered 

as valid. As the timer interrupt occurs for a very short 

interval say 270 microseconds, the behind the scene routine 

operation cant be discerned by the user. The debounce 

counters for 6 pins is achieved by an array of size 6. 

5. WORK FLOW AND PSEUDO ALGORITHM 
 
a) As soon as the embedded application enters the main() 

function, It carries out the hardware initialisation. This 

involves setting the direction of input/output ports, screen 

brightness configuration and displaying a welcome message 

and also establishing proper SPI communication, The I2C 

communication configuration where microcontroller sets or 

receives date and time from RTC(real time clock), 

Configuration of serial baud rate in order to communicate 

with the esp8266 Wi-Fi module. 

b) When ESP8266 is powered on, It runs a configuration 

script (written with aid of its SDK). This script configures the 

module as a HOST or STATION or both. It scans for the access 

points, selects a particular access point from the pool, 

authenticates itself by passing on the password via a API 

defined by its SDK. This password and SSID is hardcoded if it 

is operating under known local area network. It has a 

tolerance of 3.3v, hence a voltage divider is employed 

between the TX of the microcontroller and RX of the esp8266 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 04 Issue: 04 | Apr -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |       Page 3422 
 

module. A toggle switch is also deployed to switch between 

flash mode i.e. programming mode where code from AVR 

gets dumped into flash memory of esp8266 via the serial bus 

, and run mode; where the code dumped is made to run on 

the 32 bit auxiliary microcontroller residing in the ESP8266 

chip. 

 

Fig 5.1 Connection between ESP8266 and UART port of 

microcontroller. 

The Baud rate is set to 115200 bps, with processor running 

at 11.0592 Mhz. The baud value is calculated by the 

formula=((F_CPU)/(BAUD_RATE*16UL)-1). 

c) Now, it waits input from user. If negation button is 

pressed, microcontroller goes to sleep mode. In sleep mode 

the I/O clock is stopped, input buffers will be disabled hence 

power consumption will be considerably low. In order to 

trigger it back into normal mode, an interrupt which can’t be 

ignored INT0 is mapped to the select pin. The interrupt 

routines will redirect the flow to where it was left before. If 

select pin is pressed instead, we will be redirected to a 

routine which allows us to select an application, we wish to 

run. 

d) The applications can be registered in a file which contains 

an array of structure called APPS. It consists of two 

attributes: name of the application and a function pointer to 

store the address of the application code which needs to be 

invoked. The Top and Down navigation keys of the joystick 

helps the user to navigate across the options of applications 

to choose from. After navigating to a particular application 

option, if a right or left navigation key is pressed; the 

appropriate application’s function pointer is invoked which 

shifts the control to that application. Internal pseudo 

procedure is as follows: 

apps[index].pointer(); /* where index is a counter that refers 

to a particular APP structure instance and pointer() is the 

function pointer to the application code. 

e) one of the application is ‘Home automation control’. This 
app lets the user to control his numerous appliances in his 
home. It is built on MQTT protocol for exchange of control 
data between the watch and the end appliances. The statuses 
of appliances are mapped to bits in a variable. For Example if 
Hall-light, ac system, geyser are mapped to bits from MSB to 
LSB, then the status 101 implies hall-light and geyser is ON 
whereas AC is OFF. This status information is sent over Wi-Fi 
(esp8266, with custom firmware which converts serial data 
into Wi-Fi signal) to a Mosquito Broker, which hosts 
channels for user to send and receive data using MQTT 
protocol over a particular long lasting session of TCP 
connection. Having received the data with QOS and Topic set, 
it translates to the server location where data needs to 
routed for controlling. We have made use of node.js server 
hosted in galileo board connected to Wi-Fi end at home 
network which unpacks the data from our protocol designed 
using a python script and to control the appliances 
accordingly using relay and transistor to boost and connect 
the AC supply to devices.  

Ex: d,topic:/ucontrol,data:7 implies ‘111’ in binary indicating 
that all appliances to be turned on. 

 

Fig 5.2 overview of the architecture 

6. OVERVIEW OF MQTT 
 
MQTT control packet headers are kept as small as possible. 

Each MQTT control packet consists of three parts, a fixed 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 04 Issue: 04 | Apr -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |       Page 3423 
 

header, variable header and payload. Each MQTT control 

packet has a 2 byte Fixed header. Not all the control packet 

has the variable headers and payload. A variable header 

contains the packet identifier if used by the control packet. A 

payload up to 256 MB could be attached in the packets. 

Having a small header overhead makes this protocol 

appropriate for IoT by lowering the amount of data 

transmitted over constrained networks. 

Three QoS for message delivery could be achieved using 
MQTT: 

a) QoS 0 (At most once) - where messages are delivered 
according to the best efforts of the operating environment. 
Message loss can occur. 

b) QoS 1 (At least once) - where messages are assured to 
arrive but duplicates can occur. 

c) QoS 2 (Exactly once) - where message are assured to 
arrive exactly once. 

 

Fig 6.1 Control flow of data and control information in the 
pub-sub model employing MQTT broker 

The MQTT broker works on publisher-subscriber 
architecture where it maintains a table consisting of entries 
in (name, value) pairs .The names correspond to the topics 
and the values are a list of subscribers who are subscribed to 
that corresponding topic. If the broker gets a data or control 
message for a particular topic, it looks up in the table and 
finds out which all the subscribers are and what channel has 
been assigned to each of them. After this, it flushes out the 
data in those corresponding channels. This serves as a major 
advantage as clients can reduce the overhead of the 
controlling and management of data transfer connection 
processing. 

 

Fig 6.2 Final architecture 

7. SOFTWARE TOOLS 
 
1. Avr-gcc and binutils : atmega code compiler and other 
utilities. 

2. Avr-dude: used to flash the code into the memory of the 
atmega microcontroller. 

3. Xtensa-gcc and binutils: code compiler used for esp8266 
and binutils. 

4. esptool.py : code flash utility for esp8266 module. 

5. Esp8266 SDK: used for esp8266 code development aided 
by API. 

6. MongoDB : NOSQL database 

7. git client : for source revision control 

8. red hat’s openshift platform : cloud hosting. 

9. Mosquitto and mosquitto clients : mqtt broker and test 
utilities. 

All the softwares are open source, giving the flexibility to 
configure it according to the user’s application. 

8. CONCLUSION 
 
The smart watch is built from scratch. All the necessary 
device drivers, peripheral drivers, configuration scripts and 
make files were built exclusively. The real time performance 
analysis was carried out by controlling various appliances by 
watch with the aid of Wi-Fi module and internet 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 04 Issue: 04 | Apr -2017                     www.irjet.net                                                                p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |       Page 3424 
 

connectivity. Data retrieved by sensors were uploaded to 
database residing in the cloud. The fabrication design has 
been done where we have employed a 2 layer PCB board. 
The 3D and 2D view of the PCB is as follows: 

 

Fig 9.1 3D view of PCB 

 

Fig 9.2 2D view of PCB 

9. REFERENCES 
 
[1] MQTT Version 3.1.1 Plus Errata 01. Edited by Andrew 

Banks and Rahul Gupta. 10 December 2015. OASIS 
Standard Incorporating Approved Errata 01. 

[2] Datasheet for screen (PCD8544) 
https://www.sparkfun.com/datasheets/LCD/Monochro
me/Nokia5110.pdf 

[3] Datasheet for Atmega32 
http://www.atmel.com/images/doc2503.pdf 

[4] Architecture of cloud for IoT 
https://developer.ibm.com/architecture/pdfs/IBMClou
d-AC-IoTRAOverview-29.pdf 

[5] Low Cost Home Automation with ESP8266 and 
Lightweight protocol MQTT 
http://www.techscripts.org/OctDec_2015/OctDec2015
03.pdf  

 

https://www.sparkfun.com/datasheets/LCD/Monochrome/Nokia5110.pdf
https://www.sparkfun.com/datasheets/LCD/Monochrome/Nokia5110.pdf
http://www.atmel.com/images/doc2503.pdf
https://developer.ibm.com/architecture/pdfs/IBMCloud-AC-IoTRAOverview-29.pdf
https://developer.ibm.com/architecture/pdfs/IBMCloud-AC-IoTRAOverview-29.pdf
http://www.techscripts.org/OctDec_2015/OctDec201503.pdf
http://www.techscripts.org/OctDec_2015/OctDec201503.pdf
http://www.techscripts.org/OctDec_2015/OctDec201503.pdf

