
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3229

Efficient Resolution for the NameNode Memory Issue for the Access of

Small Files in HDFS

Deeksha S P1, R Kanagavalli2, Dr. Kavitha K S3, Dr. Kavitha C4

1PG Student, Department of CSE, Global Academy of Technology, Bengaluru, Karnataka, India
2Associate Professor, Department of CSE, Global Academy of Technology, Bengaluru, Karnataka, India

3Professor, Department of CSE, Global Academy of Technology, Bengaluru, Karnataka, India
4Professor & HOD, Department of CSE, Global Academy of Technology, Bengaluru, Karnataka, India

---***---

Abstract - Hadoop Distributed File System (HDFS) was
initially designed for storing, processing and accessing huge
files. But large number small files will not be processed and
accessed efficiently. This paper introduces an access
improvement approach for HDFS small files by using Map
File called TLB-Map File. This TLB-Map File combines many
small files into large files by Map File component to lessen
NameNode memory utilization and include TLB table in
DataNode, and to enhance access efficiency of small files. The
method first merges small files into large file and stores it in
HDFS. Then the retrieval frequency of each file is accessed
from logs in the system, and stored in TLB table. The
information of the location of the block where the small file
is stored is also filled in TLB Table. This Table is regularly
updated. Thus the TLB-MapFile Approach efficiently resolves
the retrieval issues of small files by priory fetching the files
based on table.

Key Words: HDFS, small files, TLBMapFile, retrieval,
priory fetching.

1. INTRODUCTION

Hadoop is an open source software framework used for
storing, accessing, and processing of huge datasets in
distributed environment. Hadoop is built on clusters of
commodity hardware. Each server in single machine stores
large data and provides local computation which can be
extended to thousands of machines. It is derived from
Google’s file system and MapReduce[1]. It is also suitable to
detect and handle failures. It can be used by the application
which processes large amount of data with the help of large
number of independent computers in the cluster. In Hadoop
distributed architecture, both data and processing are
distributed across multiple computers.

Hadoop consists of Hadoop Distributed File System (HDFS)
which is used for storing data and MapReduce Programming
model which is used for processing the data. HDFS is a Java-
based Hadoop Framework which provides scalable,
distributed and portable form of file system. HDFS is garble
tolerant and is highly scalable. HDFS has a Master-Slave
Architecture. It has a single NameNode and multiple
DataNodes. NameNode stores the file system Metadata and

connects clients to files. DataNode stores the actual data and
is responsible for giving response to read and write requests
of clients.

It can be seen that the structure with only one NameNode
simplifies the file system, but HDFS is at first designed for
storing and processing huge files. So the small files which
can be saved in HDFS will consume a more memory in
NameNode. Every metadata object occupies about one
hundred fifty bytes of memory [1], assuming that the
quantity of small files reaches a thousand million, the
metadata holds memory almost 40G. Similarly, the mass of
small files will cause a huge number of jumps and looking of
to and fro in DataNode and time taken to access can be very
high.

Based on MapFile, this paper provides a new small file
accessing optimization scheme: TLB-MapFile. For this
approach, small files are merged into large files, then the
data of small files that being high-frequency accessed is
obtained via access audit logs. Subsequently, the mapping
data between block and small documents are made to be
saved in TLB and are up to date frequently. When a file is
accessed once more, the mapping data is retrieved inside the
TLB table, then the mapping data of related files also are
obtained. This can be done via pre fetching mechanism and
this gains speedy prefetching small files.

2. LITERATURE SURVEY

Small file is the file whose size is less than the HDFS default
block size which is 64MB. With a view to enhance the access
efficiency of small files, a few scholars have carried out
related studies.

With the intention to quickly discover small files, a common
strategy is to merge small files into big ones via merge and
index mechanisms.

HDFS distributed file storage system comes with a small
handling mechanism: Hadoop Archive (HAR) [2], and
SequenceFile [3-4] .

Hadoop Archive (HAR) is specifically used to archive files in
HDFS for decreasing memory utilization of NameNode.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3230

However, correlations among documents are not taken into
consideration during the system of archiving. HAR archive
can be generated by using using the Hadoop archive
command, via which small files are archived into HAR files.
This technique can lessen the memory consumption of
NameNode. The main disadvantage of this method is that,
while HDFS reads the HAR file, system needs to have a look
at index files and the statistics file. So the access efficiency of
small files is very low.

A Sequence file SequenceFile is a specialized key value data
structure that acts as a container for small files[4]. It takes a
long time to transform small files into a SequenceFile.
furthermore, to discover a specific key, we ought to search
entire series record. For that reason, the access performance
of files degrades. When reading the massive small files, HDFS
can only retrieve the file content sequentially and the
reading efficiency is still low.

CombineFileInputFormat is a new input format and the
directory including a plurality of small files is used as one
input, instead of using a file as input. In order to improve the
executive speed of MapReduce task, CombineFile-
InputFormat merges multiple files into a single split and
make each Mapper task can handle multiple data. In
addition, the storage location of the data will be taken into
account.

For Small files for some particular occasion, there are many
improved methods and architectures have been proposed
[5-8]. However, these methods are not much in use and they
occupy more memory.

3. PROPOSED SYSTEM

TLBMapFile is MapFile mechanism where the small files are
first merged in large files, and the mapping information
about the block and the file are stored in table called TLB
table which has fields such as fileID, blockId, file_key and
offset. TLBMapFile accesses the frequency of small files from
audit logs. The TLB table also stores the mapping data about
the blocks and small file being frequently accessed. The
entire Architecture is implemented in nine modules and the
below figure describes the activities performed.

Fig -1: Proposed System Architecture

The architecture is split into following modules as shown in
Fig-1: Data Access Layer, Account operations, Subscription,
Data Pull Operation, Data Merge Operation, Statistics, and
Background Tasks.

3.1 Data Access Layer:

Data access layer is the one which exposes all the possible
operations on the data base to the outside world. It will
contain the DAO classes, DAO interfaces, POJOs, and Utils as
the internal components. All the other modules of this
project will be communicating with the DAO layer for their
data access needs.

3.2 Account Operations:

Account operations module provides the following
functionalities to the end users:

 Register a new seller/ buyer account
 Login to an existing account
 Logout from the session
 Edit the existing Profile
 Change Password for security issues
 Forgot Password and receive the current password

over an email
 Delete an existing Account

Account operations module will be re-using the DAO layer to
provide the above functionalities.

3.3 Subscription:

Here, the end user will be able to subscribe for a new Stocks
company or a new weather city and register it to our local
mysql database. Our project will be guiding the end user in
the subscription process by providing a link which helps

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3231

them to find out the proper scrip code of a company for
which they have to subscribe, along with that we also
provide a link to the end user which finds the longitude and
latitude of whichever city the customer wants to subscribe
to.

3.4 Data Pull Operation:

Here, the end user will be able to pull the stocks data for the
companies for which they have subscribed to, and, they will
be able to pull the weather data for the locations for which
they have subscribed to. Both the stocks data and the
weather data will be provided as a web service for which our
project will be making a Rest HTTP API call to retrieve the
data. The stocks and weather data obtained from a web
service call will be stored as a small file in the specific
location inside HDFS. When the more number of users
subscribes, large number of small files start getting stored in
HDFS. Each of these large numbers of small files will be
occupying an entire block in HDFS (128 MB by default in
cloudera). This is called as Hadoop small files problem.

3.5 Data Merge Operation:

Here, the end user can execute the Data merge algorithm
which will combine large number of small files into a single
large file thus removing the small files issue in HDFS. The
algorithm works by constructing a map with the keys as the
names of all the small files and the value being the
corresponding contents of the small file. This map is
considered as a TLB Map file (Fast Table) because this helps
us to retrieve the content of any small file just by knowing its
name. This map will be constructed in JVM’s in-memory and
we will be persisting this map in the HDFS system using
Serialization concept in Java.

3.6 Statistics:

This module helps the end user to realize the importance of
the TLB Map file in removing the name node memory issue
and Hadoop small file problem. It does so by displaying the
statistics of the details of the small files stored in HDFS and
the details of the merged file stored in HDFS. The details that
are displayed here are the names of the small files, size of
each of the small files, total memory blocks occupied etc.

3.7 Background task:

The background task here in our project will be responsible
for pulling the data for the stocks and the weather cities for
those subscribed by all the users of this project. Advantage of
this module is, the end user need not execute the data pull
operation every time he need the data, instead he can just
create a background task that will be running all the time
and automatically executes the data pull operation. This
background task can be scheduled to execute at a specific
time of the day by the end user. This task not only executes
the data pull operation, but also executes the merge

algorithm so that the result will be available to the end user
instantly.

4. CONCLUSIONS

 TLB-MapFile excavates the small file index being frequently
visited inside the audit log and stores those indexs into the
TLB table. TLB-MapFile is a brand new reading policy for
small files in HDFS, which can successfully enhance the
analyzing speed. In analyzing files, the technique firstly gains
the file mapping indexes inside the TLB table, and directly
locates the places of the small files and reads the small files.
through which, the studying efficiency of small files is
progressed.

5. FUTURE WORK

Integrate the system with the Hadoop Distributed File
System which is provided as a service by the cloud hosting
provider. Extend the solution to various other formats of the
small files of the form PDF, XLS etc

REFERENCES

[1] Konstantin S, Hairing K, Sanyjy R, et al. The Hadoop
 Distributed File System[C]. Proceedings of the 2010
 IEEE 26th Symposium on Mass Storage Systems and
 Technologies (MSST). May 03-07, 2010: 1-10.

 [2] C Vorapongkitipun, N Nupairoj. Improving
 performance of small-file accessing in Hadoop.
 Computer Science and Software Engineering (JCSSE),
 2014 11th International Joint Conference on.

[3] Chang Xiao, Qiang Li.A novel approach to record file
 correlation and reducemapping frequency on HDFS
 based on ExtendHDFS.Computer Science and Network
 Technology (ICCSNT), 2013 3rd International
 Conference.

[4] (Dong, Bo)[1,2] , Zheng, QH (Zheng, Qinghua)[1,2],
 Tian, F (Tian, Feng)[1] .An optimized approach for
 storing and accessing small files on cloud storage
 .JOURNAL OF NETWORK AND COMPUTER
 APPLICATIONS. DOI: 10.1016/j.jnca.2012.07.

[5] Dong Bo, Qiu Jie, Zheng Qinghua, et al. A novel approach
 to improving the efficiency of storing and accessing small
 files on Hadoop: A case study by PowerPoint files[C].
 //IEEE International Conference on Services Computing,
 2010: 65-72.

[6] Xuhui Liu, Jizhong Han, Yunqin Zhong, et al.
 Implementing WebGIS on Hadoop: a case study of
 improving small file I/O performance on HDFS[C].
 //IEEE International Conference on Cluster Computing

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3232

 and WorkShops. Piscataway, NJ: IEEE, 2009: 1-8.

[7] Liu Jiang, Bing Li, Meina Song. THE optimization of HDFS
 based on small files. Broadband Network and
 Multimedia Technology (IC-BNMT), 2010 3rd IEEE
 International Conference on. 912 - 915, DOI: 10.1109/
 ICBNMT. 2010. 5705223.

[8] S. Chandrasekar, R. Dakshinamurthy, P G Seshakumar, B.
 Prabavathy, Chitra Babu. A novel indexing scheme for
 efficient handling of small files in Hadoop Distributed
 File System. Computer Communication and Informatics
 (ICCCI), 2013 International Conference on. 10.1109/
 ICCCI.2013.6466147.2013.

