Wideband Yagi Uda antenna for X-band Applications

Muhsin K Muhamed¹, Angel Mathew²

¹PG Student, Dept. of Electronics, ICET, Kerala, India
²Professor, Dept. of Electronics, ICET, Kerala, India

Abstract - The paper presents a patch antenna design for wideband operation in X band. The proposed antenna is achieved using unequal resonance arms fed by Coplanar Waveguide (CPW). This design has three unequal unequal arms fed by CPW to Slotline through a T-shaped slotline transition produce three resonances to broaden the impedance bandwidth. The 1x2 patch array cover frequency ranges (S11< -10dB) from 8.55 to 11.8 GHz. The proposed antenna has resonance tuning ability, enhanced impedance bandwidth with uni directional radiation pattern.

Key Words: E shape, Unequal Arms, Wideband, X-band, Yagi uda

1. INTRODUCTION

Microstrip antenna for satellite communication has become very considerable due to their feature s such as low profile, light weight and ease of fabrication. But the low gain and narrow impedance bandwidth of these structures are a challenge for researchers. Various designs have been made to enhance bandwidth of microstrip antenna. They include utilizing a thick substrate [1] and cutting the slots in the radiating element. The example of cutting slots comprise E-shaped printed antenna [2], which provide wide bandwidths for wireless operations. By implementing a CPW-fed slot antenna with L-shape monopole 11[4], the impedance bandwidths are further enhanced. CPW feeding compared with the microstrip feedline, indicates lower radiation losses, less dispersion and ease of integration with active devices. As reported in [6], the printed slot antenna with a CPW to slotline transition feed is introduced for improving its impedance and radiation performance. Printed antenna arrays are widely used in telecommunication and radar systems. There are many kinds of microstrip antenna arrays reported in several literature for wideband operations [7]-[9].In this paper a wideband 1x2 patch antenna arrays fed by CPW to slotline with the T shaped slotline on the ground plane .the proposed array designs, unequal arms based on CPW feeding line and a couple of slotline transitions produce three adjacent resonance with the measure -10dB impedance bandwidth of 9.1, 10.3 and 11.3GHz

2. ANTENNA DESIGN AND PERFORMANCE

The geometry of the proposed 1x2 patch array is shown in Fig.1. This antenna has two radiating patches with three unequal arms which through FR4 substrate connect to the ground plane with the slotline section

![Fig -1: Geometry of proposed antenna (Top View)](image)

![Fig -2: Patch dimension](image)
have a prominent role in achieving a broad bandwidth. The proposed patch design is similar to two asymmetric E-shaped patches which are connected together back to back. The dimensions of the proposed arrays are as follows: W=24, L=20, T=20, M=6.5, Ll=24mm, Lm=17mm, Ls=13mm, Wl=6mm, Wm=4.5mm, Ws=1mm, Wl=5mm, W2=6mm, Lcpw=26.25mm, Wcpw=3mm.

2. SIMULATION AND EXPERIMENTAL RESULTS

The simulation results are made using Ansoft High Frequency Structure Simulator (HFSS). With the finite element method, Chart 3, the reflection coefficient of patch array show the array has a simulated frequency range of 8.55 to 11.8 GHz for S11 < -10dB. It includes the wide bandwidth of almost 3GHz in X-band.

Chart -3: Simulated Reflection coefficient of proposed patch array

<table>
<thead>
<tr>
<th>Proposed array designs</th>
<th>Total size of antenna (length x width x total height)</th>
<th>Total size of antenna (length x width x total height)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-slot patch antenna array in [7]</td>
<td>75x75x3.5 mm³</td>
<td>5.65-6.78 GHz</td>
</tr>
<tr>
<td>Circularly polarized patch array in [8]</td>
<td>75x75x1.5 mm³</td>
<td>5.20-6.23 GHz</td>
</tr>
<tr>
<td>Proposed 1x2 array design</td>
<td>60x39x1.6 mm³</td>
<td>8.55-11.8 GHz</td>
</tr>
</tbody>
</table>

3. CONCLUSION

The three resonance arms of 1x2 patch arrays which are fed by CPW line with a combination of two similar slotline transitions include -10dB impedance bandwidth of 9.1,10.3,11.3GHz for wideband operation in X-band.

REFERENCES


