Design and Fabrication of Crop Cutting and Collecting Machine

Dengale Suhas Annasaheb¹, Butala Ankita Ramesh², Gadekar Swapnali Bandu³, Kadaskar Rohit Krishna⁴

¹,²,³,⁴ Student, Department of Production Engineering

Amrutvahini College of Engineering, Sangamner, 422608

Abstract—Generally in India large scale as well as small scale farmers facing the problems of labor shortage for crop cutting as well as collecting. It takes the extra efforts and becomes more expensive. So there is a scope of forming a machine of such kind which is having average cost and able to minimize required time as well as labor cost meanwhile the available machines in the market are expensive. As this machine providing both cutting and collecting facility, it will be helpful to minimize labor charges.

Keywords: Power transmission, cutting mechanism, collecting mechanism, etc.

1. INTRODUCTION

Our country has an agricultural background. Most of the people in our country depend on agriculture. Generally farmer’s doing farming by traditional methods. Thus it takes a lot of time and extra effort also required. The large scale as well as small scale farmers facing the problem of labor shortage. Crop cutting and sequentially collecting is a last stage in farming which takes maximum time of farmer among all farming process. In India crop cutting and collecting is done by manually. Thus our aim is to provide a crop cutting and sequentially collecting machine which reduces the human effort and time required for cutting as well as collecting.

2. METHODOLOGY

As the requirement for crop cutting as well as cutting, the objective was to fabricate reasonable crop cutting and collecting machine for small scale and large scale farmers. For the fulfillment of this objective, it is decided to follow the following steps:

• Consulting with the local peoples who have small scale and large scale farm about the traditional crop cutting methods and equipment.
• Consulting with agricultural equipment manufactures to know about available equipment and recently in demand equipment.
• Referring several research paper regarding crop cutting machine.

Fig-1: Flow chart of Methodology.

3. CONSTRUCTION AND WORKING

3.1 Construction

3.1.1 Main frame:

The required frame must be in light weight and able to sustain weight of petrol engine. The crop cutting machine having dimension 700×500×300 (l×b×h) mm³ is fabricated. For fabrication purpose the mild steel angle section is use to built the frame.
3.1.2 Petrol Engine:

Petrol engine of 0.73Kw, 3200 rpm is used. And it is rope start type engine. Petrol engine is used because of it has good efficiency and easily available in rural areas.

3.1.3 Chain:

A motorcycle chain is used as a collecting belt. The collecting plates are welded to collecting chain. The metal strip which is welded to chain moves along with chain to carry cutted crops.

3.1.4 Chain sprocket:

A motorcycle chain sprocket is used for carrying a chain of collecting belt. In collecting mechanism two sprockets are used for collecting mechanism.

3.1.5 Cutter Assembly:

Cutter assembly consists of a sliding and stationary cutter plate. A 4 mm thick plate is used to give a support at teeth.

3.1.6 Bevel Gearbox:

It is required to transmit a power to two mechanisms that is four bar mechanism and collecting mechanism. To divert the motion by 90° this type of gear box is used.

3.1.7 Ball Bearing

A bearing is a machine element that constraints relative motion to only the desired motion, and reduces friction between moving parts.
Collecting mechanism consists of motorcycle chain with collecting plates welded on it. Collecting belt simply carry cut crop sideways.

Fig-7: Crop cutting and Collecting Machine

4. DESIGN PROCEDURE

To prepare any machine part, the type of material should be properly selected, considering design, safety. The selection of material for agricultural equipment application is given by the following factors:-

1) Availability of materials
2) Accessibility of the materials
3) Machinability of the material
4) Cost of the material

As per the above factors mild steel is the most preferable material due to it’s availability and machinability.

4.1 Engine Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>24.5cc</td>
</tr>
<tr>
<td>Engine power</td>
<td>0.73kW / 1.0HP</td>
</tr>
<tr>
<td>Fuel tank</td>
<td>0.4L</td>
</tr>
<tr>
<td>Spindle size</td>
<td>M8 x 1.25LH</td>
</tr>
<tr>
<td>Fuel mixture</td>
<td>50 : 1</td>
</tr>
<tr>
<td>Features</td>
<td>Waist cushion.</td>
</tr>
<tr>
<td>Maximum Horse Power</td>
<td>0.97 HP</td>
</tr>
<tr>
<td>Model No</td>
<td>EM2500U</td>
</tr>
<tr>
<td>Speed Controllable</td>
<td>-</td>
</tr>
</tbody>
</table>
Max. 3200 RPM

Reduction of speed during engine to pulley – Reduction ratio
= 9 inch / 3 inch = 3

Speed of Intermediate shaft =

\[\frac{3200}{3} = 1066.67 \text{ rpm} \]

Bevel gear speed reduction = \(T_2/T_1 = \frac{16}{10} = 1.6 \)

Speed of chain = \(\frac{1066.67}{1.6} = 666.66 \)

Oscillation of cutter are also same as chain = 666.66. This is maximum speed of cutter. Therefore reduction can be obtain by controlling throttling.

5. DESIGN OF FRAME –

Design of frame structure-

A frame made up of structure steel

\[E = 210 \text{ GPa}, \gamma = 0.3, \text{ Syt} = 335 \text{N/mm}^2 \]

A frame having Engine weight = 15 kg distribute on four point. 3.75 kg at each point. 3.75 Kg = 36.7875 N

![Fig-8: Engine base mounting frame structure design.](image)

\[\sum f = 0 \]

\[0 = A + B - 36.78 - 36.78 \]

\[A + B = 73.56 \]

\[A = 36.78 \]

\[B = 36.78 \]

B.M. calculation –

\[\text{B.M. at A} = 0 \]

\[\text{B.M. at B} = 36.78 \times 175 = 6436.5 \]

\[\text{B.M. at C} = 36.78 \times 325 - 36.78 \times 150 = 6436.5 \text{ N-mm} \]

\[\text{B.M. at D} = 0 \]

MAX. B.M. = 6436.5 N -mm

Maximum Load on Column DG Check design for that

Frame made up of angle (L section 25 * 3) as shown in fig. –

MAX. B.M. = 6436.5 N -mm

Maximum Load on Column DG Check design for that - Frame made up of angle (L section 25 * 3) as shown in fig. –

To determine position of neutral axis

\[\bar{y} = \frac{A_1 y_1 + A_2 y_2}{A} = \frac{75 \times 12.5 + 66 \times 1.5}{75 + 66} = 7.67 \text{ mm} \]

At section 1 & 2 –

\[A_1 = 25 \times 3 = 75 \text{ mm}^2 \]

\[y_1 = 12.5 \text{ mm} \]

\[A_2 = 22 \times 3 = 66 \text{ mm}^2 \]

\[y_2 = 1.5 \text{ mm} \]
Moment of inertia of beam –

\[I_{xx} = I_{xx1} + I_{xx2} \]
\[I_{xx} = \left[\frac{bd^3}{12} + Ah^2 \right] + \left[\frac{bd^3}{12} + A2h^2 \right] \]
\[\left[\frac{3*25^3}{12} + 75 * (7.67 - 12.5)^2 \right] + \left[\frac{22*3^3}{12} + 66 * (7.67 - 1.5)^2 \right] = 8217.9649 \text{mm}^4 \]

Then, Bending stress on beam is

\[\frac{M}{I} = \frac{\sigma}{V} \]
\[\frac{6436.5}{8217.9649} = \frac{\sigma}{7.6709} \]
\[\sigma_{max} = 6 \text{ N/mm}^2 \]

Structure steel having \(Syt = 335 \text{ N/mm}^2 \)
\[\sigma_{permissible} > \sigma_{max} \]

Therefore design is safe.

6. Design of Pulley

\[F_1 = F_1 + F_c + \frac{\Delta F}{2} = F_1 + F_c + \frac{T}{d} \]
\[F_2 = F_1 + F_c - \frac{\Delta F}{2} = F_1 + F_c - \frac{T}{d} \]

For sprocket 1 –

Diameter of first sprocket = 250 mm
\[V_{max} = \frac{\pi dN}{60*1000} = \frac{\pi*250*3200}{60} = 41.86 \text{ m/sec} \]

Power transmitted = \(P_o \)
\[P_o = (T_h - T_i) \times V \]
\[730 = (T_h - T_i) \times 41.86 \]
\[T_h - T_i = 17.43 \]

Now,
\[\alpha = \sin^{-1} \left(\frac{D - d}{2c} \right) \]
\[\alpha = \sin^{-1} \left[\frac{(250 - 65)/2 * 400}{2} \right] \]
\[\alpha = 13.37^0 \text{ i.e. } 0.23336 \text{ rad} \]

Arc of contact \(\theta = \pi - 2\alpha \)
\[= \pi - 2 * 0.23336 \]
\[= 2.6748 \text{ rad} \]

For chain friction losses is zero i.e. \(\mu = 0.25 \)

Tensions on chain –
\[\frac{T_f t}{T_t s} = e^{\mu \theta} \]
\[\frac{T_f t}{T_t s} = e^{25 + 2.67} \]
\[\frac{T_f t}{T_t s} = 1.94 \]
\[T_h - T_i = 17.43 \]
\[1.94 T_f s - T_i = 17.43 \]
\[T_i = 18.54 \]
\[T_f t = 35.97 \text{ N} \]

Total force = \(T_i + T_h \)
\[= 18.54 + 35.97 \]
\[= 54.51 \text{ N} \]

7. RESULT

By doing analysis of cutter blade in ANSYS software following results are obtained:

The force analysis on the cutter blade is done. A uniformly distributed load of 220N is applied on the cutter blade. This force generated a Von Misses stress of 2.62 MPa. The yield strength of the cutter blade is 386 MPa. This rendered the cutter safe from the cutting forces.

8. CONCLUSION

By doing all the study it is clear that the crop Cutter and collecting machine is very easy to construct and it's working is also very simple and cheap. This machine is able to run effortlessly thus using this machine efforts of farmers can be reduced. The cost of this machine considerably less as compare to manual grass cutter. The success of this machine depends on how the farmers use this machine.

ACKNOWLEDGEMENTS

We prepared the above paper with the help of research paper and also thankful of our guide Prof.Dr. Borkar B.R.

REFERENCES

