
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2660

Software Testing methods in the view of Resource preservation and

Information outbreak

R. Sacin Varma1, M.K. Ajay Krishnan2, P.S.S. Akshay Krishna3, L. Ramanathan4

1Dept. Of computer science engineering, VIT university, Vellore, India
2Dept. Of computer science engineering, VIT university, Vellore, India

3Dept. Of computer science engineering, VIT university, Vellore, India
4Dept. Of computer science engineering, VIT university, Vellore, India

---***---
Abstract - Software testing research has not kept up with
current programming trends, design framework, plans and
applications. This means that software engineering education
falls short of providing individuals with the type of knowledge
and training that other engineering specialties require.
Testing researchers ought to give careful consideration to
areas that are right now pertinent for practicing
programming designers such as embedded systems, mobile
devices, safety-critical systems and other modern paradigms in
order to provide usable results and techniques for testers. This
survey paper focuses on visiting these grounds of software
testing and the various procedures, methods and approaches
in achieving the same.

Key Words: Software testing strategies, Software

testing, testing tools, Test plans, Software testing

principles, Research orientation, Risk management,

Software quality assurance.

1.INTRODUCTION

In this paper we are going to describe the steps to be taken
to correctly assist a software project in terms of resource
management i.e. optimizing the project to run faster, have a
smaller size both on the memory and on the hard drive, and
identifying the information leakage points which could be in
terms of compromising private data or simply exploiting
them to bypass security checks. This paper mainly focuses
on the development and identification perspectives and not
on the remedy, as a remedy is always easier to find than the
vulnerability itself. As Sun Tzu once said “If you know the
enemy and know yourself, you need not fear the result of a
hundred battles. If you know yourself but not the enemy, for
every victory gained you will also suffer a defeat. If you know
neither the enemy nor yourself, you will succumb in every
battle.”. We have reviewed papers that work on providing
relevant information on testing and debugging for some of
the most common vulnerabilities and optimization issues
which are rather ignored even though they are so prevalent.
It should always be remembered that the goal of software
testing is to evaluate the capability or usability of a program
by detecting the errors systematically, preferably in a

stepwise order, so as to spend minimum amount of time and
efforts on one of the most important phases of software
development i.e. the software quality assurance (SQA). It
should also be noted that all the errors or bugs which are
detected need not be fixed if the risk associated with the
problem is ignorable, which can only be assessed through
testing. In this Survey Paper, we’ve reviewed papers that
explore on the same.

1.1 Resource Preservation

One of the most important subject in resource
preservation is to use the resources to their minimum. For
optimizing data in terms of operation, it is always a good
practice to identify the clusters of code that are function
independently. On doing this the code can be put into
multiple threads, to take full advantage of the multi core
architecture of the modern computers to make multiple
processes run at the same time leading to a smaller
execution time thus making the project faster.

For optimizing data in terms of memory, a top-down
approach can be followed i.e. write the code and then try
minimizing the number of static variables used first and then
the lines of code and then reduce the number of dynamic
variables where ever it is possible. Optimizing data in terms
of physical memory is very important as the user cannot use
multiple applications at an optimal level if all the memory is
occupied by one program only. Whereas the secondary
memory i.e. the lines of code need not be paid much
attention as secondary memory is generally very abundant.

Using resource preservation doesn’t only mean optimizing
the data usage with the resources that are used but also
keeping backup for the resources and protecting the present
system resources. Of course it the application doesn’t use the
internet the previously mentioned resource optimization in
terms of data would be enough but if that is not the case then
there is a lot more to be worried about like the databases,
the data in the databases, the servers, the high end routers
that deal with ISP level transfers etc. they can all be altered
or deprived of their functions or content. In fact this paper
mainly focuses on such type of software.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2661

1.2 Information Outbreak

The leakage of information of any sort i.e. the user private
data or the source code of the software or a potential threat
that was not patched.

1.3 Why Do Testing, What Is the Worst That Could
Happen?

A hacker might delete all the records in the database and
this will lead to preforming the restore operations which are
very tedious. The hacker might do even worse if he
manipulated the data of multiple users in a random order.
The hacker might embed a script to transfer all the cookies of
a user to another website, that might include passwords or
the cookies of other websites which can be used to directly
login to someone else’s account. The hacker might embed a
script which redirects the present page to a phishing page or
simply generate multiple alert messages or multiple tabs or
place one page over the other to steal details etc. to irritate or
take advantage of the user.

The system resources taken to generate an alert message
or create a new tab may not be much but they still do irritate
the user and they would definitely discourage the user from
visiting or opening the software. This is clearly the most
dangerous threat for a customer driven company because
they might lose a potential client.

2. BEFORE THE TESTING PROCEDURE

Before testing, it is important to decide the type of testing
you are going to perform.

2.1 Different Types of Testing

2.1.1 White Box Testing

In this testing, source code and structure of framework is
made obvious. Thus, it is exceedingly proficient in
recognizing and resolving problems, because bugs can be
found even before they cause any problem. It is a strategy for
finding errors in which the analyzer has complete knowledge
of how the software components work and interact. This
strategy is generally not used for debugging in large systems,
so it is mostly used for web service based applications. A few
types of white box testing techniques are basis Path Testing,
Loop Testing, Control Structure Testing.

2.1.2 Black Box Testing

A black box method is used when internal details and
workings are not understood or accessibility is not granted
to its user. It is testing which involves cleaver guesses and
trial-and-error methods to determine the errors as coding
knowledge or internal structure need not be known. The

main aim of this test is to check how well the software goes
with the specified requirements. Thus, it just inspects the
crucial part of the framework. It acts like an input output
model in which the tester checks for a relevant output for a
given input. Different types of Black box testing methods are
Equivalent Partitioning, Boundary value Analysis, Cause-
Effect Graphing Techniques, Comparison Testing, Fuzz
Testing, Model-based Testing.

2.1.3 Grey Box Testing
As of late, a third testing technique has been likewise

considered i.e. grey box testing. It is a testing method used
when the analyzer has some knowledge over the internal
working of the system and its underlying code. It uses lesser
guess work as some of the things are known, it is the way
most of the companies give their product if it is to be tested
by a third party tester. This method may not give the best
results theoretically when compared to white box testing but
it one of the most natural way of testing the software. This
particular method is mostly unbiased because the tester is
not required to have access to the source code, so it
generally leads to more creative attacks while testing.

2.2 How to Test Effectively

Test a program in order to make it fail: Testing is the way
toward executing a program with the expectation of
discovering bugs and mistakes. Testing turns out to be more
successful when bugs and errors are discovered.

Begin testing early: This helps in finding and settling

various errors in the early phases of the software
development, this further reduces the time spent in finding
errors in the future.

Test Plan: Test Plan ordinarily portrays test procedure,

test scope, test goals, test condition, deliverables of the test,
dangers and alleviation included, levels of testing to be
connected, strategies and techniques.

Effective Test cases: Effective test cases must be proposed
with the goal that they can be measured and so that clear
test outcomes can be obtained.

Test conditions of validity: The project should first be

tested with valid inputs, then it should be tested for invalid
test inputs and unexpected output conditions are expected.

Test at various levels: Distinctive testing must be done at

various levels of testing so that individuals can perform
different testing methods at all level.

3. FINDING THREATS USING THREAT MODELLING

Threat modelling is the way of detecting threats and

potential threats and their effects on a framework. It is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2662

typically used as a part of the software development life-

cycle (SDLC) or risk management procedure to empower

engineers and analyzers to have a global perspective of

potential dangers posed to a framework. Along these lines,

threat modelling gives an establishment to the risk profile

associated with the arrangement of web application services,

and the exposure made with the accessibility of these

administrations.

3.1 Make an Application Overview

The application overview is normally depicted in pictorial

form like a module or deployment diagram. It ought to be

refreshed as the framework is decomposed and new

components are added or discovered.

3.2 Breakdown The System

By appreciating a greater amount of the internal workings

of the framework, the ease with which dangers can be found

is enhanced and the completeness of the test or analysis will

be increased. Breaking down the system can work on various

attributes like trust level, assets, entry points, information

flow and use cases.

3.3 Threat Enumeration

Threat enumeration and discovery of bugs and errors is

normally performed by security masters, designers and

testers as a group like a brainstorming exercise. For every

risk, it is important to recognize the cause and attack vectors

and the potentially affected resources. It might likewise be

valuable to decide the trust levels required to utilize the

alarming entry point.

Risk assessment helps us comprehend the kind of threat

better and to take the vital steps required to completely

remove or reduce the effect of the consequences. One type of

arrangement is known as the STRIDE model which includes

checking for Spoofing, Tampering, Repudiation, Information

Disclosure, Denial of Service, Elevation of privilege. All of

which are common problems which are mostly ignored due

to trust in the software being used on a regular basis by the

companies.

3.4 Document The Threat Profile

So as to complete the documentation of the threat profile,

we should have the Test Plan Document, Threat Profile

Document, Test Case Execution Results. Through this

documentation procedure we would arrive at Testing Report

which can be readily executed and a Technical Testing

Report.

Fig -1: Threat modelling flow chart

4. Dynamic Analysis

This is generally employed testing in web applications.
Security vulnerabilities in web applications may bring about
stealing of important and private information, breaking of
information integrity or influence web application
accessibility. In this way the assignment of securing web
applications is paramount. This paper presents
augmentations to the Tainted Mode Model which permits
inter-module vulnerabilities detection. Also, this paper
displays another way to deal with vulnerabilities which
combines favorable circumstances of penetration testing and
dynamic analysis.

The most effective method for discovering security
vulnerabilities in web applications is manual code review.
This method is extremely tedious, requires expert skills, and
is inclined to overlooked errors. Subsequently, security
society effectively creates computerized ways to deal with
discovering security vulnerabilities.

4.1 Tainted Mode Model

 This model was executed by the approach of static
analysis for PHP and Java advances and by methods for
dynamic analysis for Perl, Ruby, PHP, and Java.

A few drawbacks of the tainted model include

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2663

-Any cleansing routine eliminates tainted flags from the
string values without much relation to the critical statement
that uses this value subsequently. This may bring about
overlooked SQL injection vulnerability. This drawback
reduces the wholeness of the investigation.

-Inability to deal with validation that is established as
conditional branching

They consolidate static and dynamic analysis methods to
recognize faulty sanitization methods which can be
circumvent by an attacker. The approach first employs string
analysis to develop grammar syntax representing a set of
values in the given statement. Subsequently, dynamic
analysis is connected to check the outcomes acquired by the
initial step. The objective of the second step is to decrease
false positives.

Inject malicious data into Web applications. Common
methods used include:

• Parameter tampering: gives uniquely created vindictive
values in fields of HTML forms.

 • URL control: utilize uncommonly created parameters to be
submitted to the Web application as a feature of the URL.

• Hidden field control: set shrouded fields of HTML forms in
Web pages to malicious values.

• HTTP header tampering/altering: control parts of HTTP
solicitations sent to the application.

 • Cookie poisoning/harming: put malicious information in
cookies, small files sent to Web-based applications.

 • SQL injection: pass input containing SQL commands to a
database server for execution.

• Cross-site scripting: abuse applications that yield
unchecked input verbatim to trap the client into executing
vindictive scripts.

 •HTTP response splitting: misuse applications that yield
input verbatim to perform Web page mutilations or Web
cache poisoning attacks.

5. Security Vulnerabilities

Most of the security vulnerabilities are because of
backdoors put by employees or forgetting to remove a piece
of code that they used during testing.

These vulnerabilities have existed from a very long time
and every company should make sure that their products are
definitely not vulnerable to them.

Table -1: STRIDE testing
Category Description

Spoofing Spoofing covers the large usage of faked

credentials to access assets that the attacker is not

expected/certified to hold access to. If a web

service insufficiently checks the credentials

handed out by its clients, it might be vulnerable to

spoofing attacks.

Credential forgery, session hijacking and

impersonation attacks are examples.

Tampering Tampering is the unauthorized alteration of

information in a framework or as it streams

between parts of a framework. Tampering attacks

comprise of changing corporate information, man-

in-the-middle attacks and the inclusion of

malicious software like viruses and Trojans. The

impacts can be fatal and make interruptions in

service and loss of data integrity.

Repudiation Repudiation is the refusal by an agent of having

completed an action, notwithstanding the action

having really been finished by that agent. This

threat exists when different agents have no

technique for demonstrating that something

occurred. It can prompt information irregularities

and the failure to demonstrate or discredit

transactions have happened.

Information

Disclosure

Information disclosure is the capacity for clients to

access information that they are not authorized to

access. If the web service doesn’t entirely verify

the identity of its clients it might be unveiling

private information or web services implantation

details to unapproved or malicious clients.

Information disclosure can have drastic results for

an association.

Denial of Service A denial of service threats focuses on exhausting

the computing or network resources of a

framework or unconditional usage of an execution

flaw with a specific end goal to keep system from

offering services to its legitimate users.

Elevation of

privilege

An elevation of privilege attack includes an

attacker accessing information or functionality of

frameworks to which they are not authorized.

These vulnerabilities can emerge due to many

factors but are more often than not a result of

defective authorization mechanisms. The

outcomes of an elevation of privilege attack are

serious and may bring about total compromise of

the system.

6. CONCLUSIONS

 There is no structure that is particularly custom fitted for
the security testing of web based services. Web services are

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2664

growing in importance in the Enterprise sector and
therefore, the security of web services will end vital. This
paper recognizes and points at a way to deal with web
services security testing including devices, procedures and
processes. It intends to give a manual for associations
wishing to receive an institutionalized procedure for
assessing security mechanisms in web services.

ACKNOWLEDGEMENT
We would like to thank our project guide Mr. Ramanathan
L.(Assistant Professor) of the Computer science engineering
department for encouraging and guiding us throughout the
project.

REFERENCES

1. T. Sofia (Pg Scholar) Mr. R. Kannan (M.E. Asst Proff),”

detecting security vulnerabilities in web applications
using dynamic analysis with penetration testing “,
IJISAER, Volume 13, Issue 40 Ver. II (Jan. 2015)

2. Ana Rosa Cavalli, Azzedine Benameur, Wissam Mallouli,
“A Passive Testing Approach for Security Checking and
its Practical Usage for Web Services Monitoring”.

3. Andrey Petukhov, Dmitry Kozlov,” Detecting Security
vulnerabilities in Web Applications Using Dynamic
Analysis with Penetration Testing”.

4. Rasneet Kaur Chauhan and Iqbal Singh,“Latest
Research and Development on Software Testing
Techniques and Tools”.

5. Colin Wong, Daniel Grzelak ,“A web services security
framework”, SIFT SPECIAL PUBLICATION.

6. Thomas J. Ostrand, Elaine J. Weyuker, “Software testing
research and software engineering education”.

7. Antonia Bertolino, “Software Testing Research:
Achievements, Challenges, Dreams”.

8. Khushal Singh, Vikas, “ Analysis of Security Issues in
Web Applications through Penetration Testing”.

9. Jeff Orloff, "Web application security: Testing for
vulnerabilities”, IBM developerWorks.

10. Vala .R, Jasek .R, “security testing of web applications”.

