Effect of Change of Spur Gear Tooth Parameter

On Bending Stress by Simulation

Nikhil B. Abattini 1, M. M. Mirza2, P. V. Pawar3

1 Dept. of Mech. Engineering, Rajarambapu Institute of Technology, Sakharale, Islampur, India.
2 Dept. of Mech. Engineering, Rajarambapu Institute of Technology, Sakharale, Islampur, India.
3 Manager R&D(Gear), Laxmi Hydraulics Pvt. Ltd. Solapur, India.

Abstract: In this paper spur gear teeth with circular root fillet radius is used instead of standard trochoidal root fillet radius and analysed by using ANSYS version 14.0. The strength of new modified teeth is studied in comparison with standard design. The analysis shows that circular root fillet has higher bending strength than standard trochoidal root fillet design. The result shows that trochoidal root fillet design is suitable for higher number of teeth and circular root fillet design is suitable for lesser number of teeth.

Keywords: Spur Gear, Trochoidal Root Fillet, Circular Root Fillet, Bending Stress.

1. INTRODUCTION

Gear transmission systems play an important role in many industries. The knowledge and understanding of gear behavior in mesh such as stress distribution, work condition and distortion is critical to monitoring and controlling the gear transmission system.

A pair of teeth in action is generally subjected to two types of cyclic stresses: bending stresses inducing bending fatigue and contact stress causing contact fatigue. Both these types of stresses may not attain their maximum values at the same point of contact. However, combined action of both of them is the reason of failure of gear tooth leading to fracture at the root of a tooth under bending fatigue and surface failure, like pitting due to contact fatigue. These types of failures can be minimized by careful analysis of the problem during the design stage and creating proper tooth surface profile, optimal teeth parameters with proper manufacturing methods.

One of the primary causes of gear tooth failure is the presence of large tensile stresses in the root fillet of loaded gear tooth. These stresses reduce the overall gear life and can result in catastrophic tooth failure under peak load conditions. Many attempts have been made by earlier investigators to relate the tooth failure and the tensile stresses observed in loaded gear, and found that maximum principle stress is the key factor, which governs the fatigue life of the spur gear. A small reduction in maximum principle stresses leads to increase in the fatigue life of the gears considerable. Therefore it is important to find out the method of reducing maximum principle stress in the gear there by increasing the life of gears.

Most of them are given solutions to the use of material with improved strength, hardening the surfaces selectively with heat treatment and carburization, and shot peening to improve the surface finish. Many efforts such as altering the pressure angle, using the asymmetric teeth, introducing stress relief feature and using the gear with high contact ratio have been made to improve the durability and strength of the gear.

2. GEOMETRY OF GEAR

![Figure-1: Geometry of circular fillet](image)

Consider the involute spur gear tooth of circular fillet is shown in figure 1. The point ‘O’ is center of the gear, axis ‘Oy’ is the axis of symmetry of tooth. Point B is the point where involute profile starts (from the form circle).
Point A is tangent to the circular fillet with the root circle. Point D lying on ξ_2. AD represent the center of the circular fillet. Line (ξ_2) is tangent to the root circle at A and intersects with the line (ξ_1) at C.

From geometry of circular fillet coordinates (points A, B, D) obtained using following equations

$$X_A = r_f \sin (\xi + \Omega_s), \quad Y_A = r_f \cos (\xi + \Omega_s)$$

$$X_B = r_f \sin \Omega_s, \quad Y_B = r_f \cos \Omega_s$$

$$Y_B = \frac{\tan (\xi + \Omega_s)}{\cos(\Omega_s) + \sin(\Omega_s) \cdot \tan (\xi + \Omega_s) \cdot \cos \Omega_s}$$

$$Y_B = \frac{1}{\cos(\Omega_s) + \sin(\Omega_s) \cdot \tan (\xi + \Omega_s) \cdot \cos \Omega_s}$$

3. MODELLING OF GEAR

Gear is modelled using CATIA V5R16. Specifications of gear given in following table:

<table>
<thead>
<tr>
<th>Input parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of teeth</td>
<td>15</td>
</tr>
<tr>
<td>Module (m)</td>
<td>1 mm</td>
</tr>
<tr>
<td>Pressure angle ((\Phi))</td>
<td>20</td>
</tr>
<tr>
<td>Helix angle ((\psi))</td>
<td>0</td>
</tr>
<tr>
<td>P.C.D.</td>
<td>15 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>9.5 mm</td>
</tr>
<tr>
<td>Tooth root fillet</td>
<td>Trochoidal and Circular</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>7700 Kg/m3</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>200000 MPa</td>
</tr>
<tr>
<td>Poissons ratio</td>
<td>0.27</td>
</tr>
</tbody>
</table>

A single tooth is considered for finite element analysis. Gear material strength is a major consideration for the operational loading and environment. In modern practice heat treated alloy steel are used to overcome the wear resistance. In this work $20M_{CR5}$ (Case Hardened Steel) is used for analysis. ANSYS version 14.0 software is used for analysis. The gear tooth is meshed in 3-D solid 186 with fine mesh. Solid 186 is a structural 3D 20 node solid element. It has 3 degree of freedom in X, Y, Z direction (Translation). It supports plasticity, creep, stress and large deflection.

Force components for 15 teeth:

- Power (P) = 375 watt
- Speed (N) = 1500 rpm
- Torque (T) = 2380 N-mm
- Tangential component (Ft) = 317.33 N

Meshing of model is shown in following fig.

Figure-2. Meshing of model
Boundary condition of model is shown in following fig.

Trochoidal root fillet Circular root fillet

Figure- 3. Boundary condition of model

5. RESULTS AND DISCUSSION

Bending stress and deflection were carried out for both trochoidal root fillet and circular root fillet design. Bending stress values are presented in table.

The result shows that deflection value of both trochoidal and circular root fillet gears are similar. But bending stress developed in circular root fillet have less stress (106.64 MPa) compared to trochoidal root fillet gear (122.95 MPa).

Deflection of trochoidal and circular root fillet gear is shown in following

Figure- 4. Deflection (trochoidal root fillet)

Figure- 5. Deflection (circular root fillet)

Bending stress of trochoidal and circular root fillet gear is shown in following fig.

If we further analysis is carried out by increasing number of teeth (17, 20, 22, 25) keeping constant module following result are obtained. These results are compared with modified circular root fillet design.

5.1 COMPARISON OF BENDING STRESS:

For trochoidal root fillet:

\[
N = 17
\]
Table 3: Bending stress results:

<table>
<thead>
<tr>
<th>No. of teeth (N)</th>
<th>Bending stress (MPa)</th>
<th>% reduction in stress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trochoidal</td>
<td>Circular</td>
</tr>
<tr>
<td>15</td>
<td>122.95</td>
<td>106.64</td>
</tr>
<tr>
<td>17</td>
<td>117.16</td>
<td>106.75</td>
</tr>
<tr>
<td>20</td>
<td>107.28</td>
<td>103.90</td>
</tr>
<tr>
<td>22</td>
<td>102</td>
<td>99.17</td>
</tr>
<tr>
<td>25</td>
<td>100.26</td>
<td>99.37</td>
</tr>
</tbody>
</table>
6. CONCLUSION

The effect of proposed circular fillet design on the bending stress induced in spur gear was investigated in comparison with standard trochoidal circular root fillet design. From the results it concludes that deflection in trochoidal and circular root fillet gear tooth is almost same. But there is reduction in bending stress value for circular root fillet design compared to bending stress value in trochoidal root fillet design.

From the results it found that 13.27 % reduction in stress when circular root fillet design is used instead of standard trochoidal root fillet design for existing gear (15 no. of teeth).

From the results it is found that as number of teeth increases % reduction in bending stress decreases. Circular root fillet design is useful for lesser number of teeth and trochoidal root fillet design is suitable for more number of teeth (more than 22).

REFERENCES

Christos A. Spitas and Vasilis A. Spitas “Generating Interchangeable 20 degree Spur Gear Sets with Circular Fillets to Increase Load Carrying Capacity”, Gear Technology, July/August 2006