ASYMPTOTIC PROPERTIES OF THE DISCRETE STABILITY TIME SERIES WITH MISSED OBSERVATIONS BETWEEN TWO-VECTOR VALUED STOCHASTIC PROCESS

M.A.Ghazal ${ }^{1}$, A.I.El-Deosokey ${ }^{2}$, M.A.Alargt ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Damietta, Egypt.
${ }^{2}$ Lecture faculty of computer science and information system 6th of October University, Egypt.
${ }^{3}$ Department of Mathematics, Faculty of Science, University of Damietta, Egypt.

Abstract

In this paper, we defined the Expanded finite Fourier transform of the strictly stability $(r+s)$ vector valued time series where there are some randomly missed observations, asymptotic moments are derived and the application will be studied.

Key Words: Discrete time stability processes, Data tapers, Finite Fourier transform, Missing values, Complex Normal Distribution.

1.INTRODUCTION

Many authors, as e.g. Brillinger [1]; Dahlhaus[3]; Ghazal and Farag [4] studied 'The estimation of the spectral density, autocovariance function and spectral measure of continuous time stationary processes'; E.A,El-Desokey[9] studied 'Some properties of the discrete expanded finite Fourier transform with missed observations'; M.A.Ghazal, G.S. Mokaddis and A.El-Desokey[10],[11] are Studied 'The Spectral Analysis of strictly stationary continuous time series" and 'Asymptotic Properties of spectral Estimates of Second-Order with Missed Observations". The paper is organized as the following: Section1. Introduction, we develop asymptotic properties of estimates the desired μ, $a(u)$ In Section 2, the Asymptotic properties of Expanded finite Fourier transform with missed observations was discussed in section 3, section 4 we will apply our theoretical study in two cases in climate and economy.

2. ASYMPTOTIC PROPERTIES OF ESTIMATES THE DESIRED $\underline{\mu}, a(u)$

Consider an $(r+s)$ vector-valued stability series

$$
Z(t)=\left[\begin{array}{ll}
X(t) & Y(t) \tag{2.1}
\end{array}\right]^{T},
$$

$t=0, \pm 1, \pm 2, \ldots \ldots$ with $X(t)$. \boldsymbol{r} vector-valued and $Y(t) s$ vector-valued.

We assume the series (2.1) is $(r+s)$ stability vector-valued series with components $\left[X_{j}(t) \quad Y_{i}(t)\right]^{r}, j=1,2, \ldots, r, i=1,2, \ldots \ldots, s$ all of whose moments exist, we define the means as

$$
\begin{equation*}
E X(t)=C_{x}, E Y(t)=C_{y} \tag{2.2}
\end{equation*}
$$

The covariances

$$
\begin{align*}
& E\left\{\left[X(t+u)-C_{x}\right]\left[X(t)-C_{x}\right]^{T}\right\}=C_{x x}(u), \\
& E\left\{\left[X(t+u)-C_{x}\right]\left[Y(t)-C_{y}\right]^{T}\right\}=C_{x y}(u), \tag{2.3}\\
& E\left\{\left[Y(t+u)-C_{y}\right]\left[Y(t)-C_{y}\right]^{T}\right\}=C_{y y}(u),
\end{align*}
$$

and the second-order spectral densities

$$
\begin{align*}
& f_{x x}(\lambda)=(2 \pi)^{-1} \sum_{u=-\infty}^{\infty} C_{x x}(u) \operatorname{Exp}(-i \lambda u), \\
& f_{x y}(\lambda)=(2 \pi)^{-1} \sum_{u=-\infty}^{\infty} C_{x y}(u) \operatorname{Exp}(-i \lambda u), \tag{2.4}
\end{align*}
$$

$$
f_{y y}(\lambda)=(2 \pi)^{-1} \sum_{u=-\infty}^{\infty} C_{y y}(u) \operatorname{Exp}(-i \lambda u)
$$

$$
\text { , for }-\infty<\lambda<\infty .
$$

In this section we consider the problem of determining an s-vector μ, and an $s \times r$ filter $\{a(u)\}$, so that

$$
\begin{equation*}
\underline{\mu}+\sum_{u=-\infty}^{\infty} a(t-u) X(u) \tag{2.5}
\end{equation*}
$$

Which is close to $Y(t)$. Suppose we measure closeness by the $S \times S$ Hermitian matrix

$$
\begin{equation*}
E\left\{\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]^{T}\right\}, \tag{2.6}
\end{equation*}
$$

Theorem 2.1

Consider an $(r+s)$ vector-valued second-order of stability time series of the form (2.1) with mean (2.2) and autocovariance functions (2.3). Suppose $c_{x x}(u), c_{y y}(u)$ are absolutely summable and suppose $f_{x x}(\lambda), f_{x y}(\lambda)$ and $f_{y x}(\lambda)$ are given by (2.4) and $f_{x x}(\lambda)$ is nonsingular, $-\infty<\lambda<\infty$. Then the, $\underline{\mu}$, and $a(u)$ that minimize (2.6) are given by

$$
\begin{equation*}
\underline{\mu}=c_{y}-\left(\sum_{u=-\infty}^{\infty} a(u)\right) c_{x}=c_{y}-A(0) c_{x}, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
a(u)=(2 \pi)^{-1} \int_{0}^{2 \pi} A(\alpha) \operatorname{Exp}\{i u \alpha\} d \alpha \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
A(\lambda)=f_{y x}(\lambda) f_{x x}(\lambda)^{-1} \tag{2.9}
\end{equation*}
$$

the filter $\{a(u)\}$ is absolutely summable. The minimum achieved is
$\int_{0}^{2 \pi}\left[f_{y y}(\alpha)-f_{y x}(\alpha) f_{x x}(\alpha)^{-1} f_{x y}(\alpha)\right] d \alpha$.
where $A(\lambda)$ is the transfer function of the $S \times r$ filter achieving the indicated minimum . we call $A(\lambda)$, the complex regression coefficient of $Y(t)$ on $X(t)$ at frequency λ.

Proof

Let $A(\lambda)$, be the transfer function of $a(u)$ which defined as (2.8). We may write as,
$E\left\{\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]^{T}\right\}$
$=\operatorname{cov}\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]+E\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right] \times$
$\times E\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]^{T}$
$=E\left\{\left(\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]-E\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]\right) \times\right.$

$$
\begin{aligned}
& \left.\times\left(\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]^{T}-E\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]\right)^{T}\right\}+ \\
& +E\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right] \times E\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]^{T}
\end{aligned}
$$

$$
=\int_{-\pi}^{\pi}\left[f_{y y}(\alpha)-f_{y x}(\alpha) f_{x x}^{-1}(\alpha) f_{x y}(\alpha)\right] d \alpha+
$$

$$
+\int_{-\pi}^{\pi}\left[A(\alpha) f_{x x}(\alpha)-f_{y x}(\alpha)\right] f_{x x}^{-1}(\alpha) \times
$$

$$
\times\left[A(\alpha) f_{x x}(\alpha)-f_{y x}(\alpha)\right]^{T} d \alpha+\left[c_{y}-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) c_{x}\right] \times
$$

$$
\times\left[c_{y}-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) c_{x}\right]^{T}
$$

$$
E\left\{\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\left(\sum_{\infty}^{\infty} 8\right)} a(t-u) X(u)\right]\left[Y(t)-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) X(u)\right]^{T}\right\} \geq
$$

$$
\geq \int_{-\pi}^{\pi}\left[f_{y y}(\alpha)-f_{y x}(\alpha) f_{x x}^{-1}(\alpha) f_{x y}(\alpha)\right] d \alpha
$$

let

$$
\begin{equation*}
c_{y}-\underline{\mu}-\sum_{u=-\infty}^{\infty} a(t-u) c_{x}=0 \tag{2.10}
\end{equation*}
$$

then

$$
\underline{\mu}=c_{y}-\sum_{u=-\infty}^{\infty} a(t-u) c_{x}=c_{y}-A(0) c_{x},
$$

and

$$
\begin{aligned}
& A(\alpha) f_{x x}(\alpha)-f_{y x}(\alpha)=0 \\
& \Rightarrow \quad A(\alpha)=f_{y x}(\alpha) f_{x x}(\alpha)^{-1}
\end{aligned}
$$

Using (2.7) and (2.8) the minimum achieved

$$
\int_{0}^{2 \pi}\left[f_{y y}(\alpha)-f_{y x}(\alpha) f_{x x}^{-1}(\alpha) f_{x y}(\alpha)\right] d \alpha
$$

3. ASYMPTOTIC PROPERTIES OF EXPANDED FINITE FOURIER TRANSFORM WITH MISSED OBSERVATIONS

let $h_{a}^{(T)}(\lambda)$ be the discrete expanded finite Fourier transform which is defined as
$h_{a}^{(T)}(\lambda)=\left[2 \pi \sum_{t=0}^{T-1}\left(d_{a}^{(T)}(t)\right)^{2}\right]^{-1 / 2} \sum_{t=0}^{T-1} d_{a}^{(T)}(t) \psi_{a}(t) \exp \{-i \lambda t\},-\infty<\lambda<\infty$
where
$\psi_{a}(t)=B_{a}(t) Z_{a}(t), \quad a=1,2, \ldots \ldots, \min (r, s)$,
, $X_{a}(t), Y_{a}(t)$ are the observations on the stability stochastic processes, $B_{a}(t)$ is Bernoulli sequence of random variable which is stochastically independent of $X_{a}(t), Y_{a}(t)$ which satisfies
$B_{a}(t)= \begin{cases}1 & , \text { if } X_{a}(t), Y_{a}(t) \text { are observed ; } \\ 0 & , \text { otherwise } .\end{cases}$
Let $B_{a}(t)$ be an independent and identically distributed random variables with

$$
\begin{align*}
& P\left[B_{a}(t)=1\right]=p_{a}, \\
& P\left[B_{a}(t)=0\right]=q_{a} \tag{3.4}
\end{align*}
$$

where $p_{a}+q_{a}=1$.
The data window function $d_{a}^{(T)}(t)=d_{a}^{(T)}\left(\frac{t}{T}\right), t \in(0, T)$ is bounded has bounded variation and vanishes for all t outside the interval $[0, T]$.

Assumption

Let $d_{a}^{(T)}(t), t \in R, a=\overline{1, r}$ has bounded variation and vanishes for $t>T-1, t<0$ then,

$$
G_{a_{1}, \ldots, a_{k}(\lambda)}=\sum_{t=0}^{T-1}\left[\prod_{j=1}^{k} d_{a_{j}}^{(T)}(t)\right] \exp \{-i \lambda t\},
$$

For $-\infty<\lambda<\infty$ and $a_{1}, \ldots, a_{k}=1,2, \ldots, r$.The following theorem will give the asymptotic properties of $\psi_{a}(t)$ which is defined as (3.2).

Theorem 3.1

Let $\psi_{a}(t)=B_{a}(t) Z_{a}(t), a=1,2, \ldots \ldots, m i n(r, s)$ are missed observations on the stable stochastic processes, $X_{a}(t), Y_{a}(t), a=1,2, \ldots \ldots, \min (r, s)$ and $B_{a}(t)$ is Bernoulli sequence of random variables which satisfies equations(3.1),(3.4), Then,

$$
\begin{equation*}
E\left\{\psi_{a}(t)\right\}=0, \tag{3.5}
\end{equation*}
$$

$\operatorname{Cov}\left\{\psi_{a_{1}}\left(t_{1}\right), \psi_{a_{2}}\left(t_{2}\right)\right\}=p_{a_{1} a_{2}}\left[\begin{array}{cc}c_{x x}(u) & c_{x y}(u) \\ c_{y x}(u) & A(\alpha) c_{x x}(u) A(\alpha)^{T}\end{array}\right]$, $\operatorname{Cov}\left\{\psi_{a_{1}}\left(t_{1}\right), \stackrel{(3.1)}{\psi_{a_{2}}}\left(t_{2}\right)\right\}=$
$=p_{a, a_{2} a_{2}}\left[\begin{array}{cc}\int_{-\infty}^{\infty} f_{a, a_{2}}(v) \exp \{i v u\} d v & \int_{-\infty}^{\infty} f_{a, a_{2}}(v) \exp \{i v u\} d v A(\alpha)^{T} \\ A(\alpha) \int_{-\infty}^{\infty} f_{a, a_{2}}(v) \exp \{i v u\} d v & A(\alpha) \int_{-\infty}^{\infty} f_{a, a_{2}}(v) \exp \{i v u\} d v A(\alpha)^{T}\end{array}\right]$,

Proof

Since $X(t)$ is a strictly stability series and $B_{a}(t)$ is independent of $Z_{a}(t)$ then (3.5) comes directly.
$\operatorname{Cov}\left\{\psi_{a_{1}}\left(t_{1}\right), \psi_{a_{2}}\left(t_{2}\right)\right\}=$
$=\operatorname{Cov}\left\{B_{a_{1}}(t) Z_{a_{1}}(t), B_{a_{2}}(t) Z_{a_{2}}(t)\right\}$
$=\operatorname{Cov}\left\{\left[\begin{array}{l}B_{a_{1}}\left(t_{1}\right) X_{a_{1}}\left(t_{1}\right) \\ B_{a_{1}}\left(t_{1}\right) Y_{a_{1}}\left(t_{1}\right)\end{array}\right],\left[\begin{array}{l}B_{a_{2}}\left(t_{2}\right) X_{a_{2}}\left(t_{2}\right) \\ B_{a_{2}}\left(t_{2}\right) Y_{a_{2}}\left(t_{2}\right)\end{array}\right]^{T}\right\}$
$=E\left[\begin{array}{cc}B_{a_{1}}\left(t_{1}\right) X_{a_{1}}\left(t_{1}\right) B_{a_{2}}\left(t_{2}\right) X_{a_{2}}\left(t_{2}\right) & B_{a_{1}}\left(t_{1}\right) X_{a_{1}}\left(t_{1}\right) B_{a_{2}}\left(t_{2}\right) Y_{a_{2}}\left(t_{2}\right) \\ B_{a_{1}}\left(t_{1}\right) Y_{a_{1}}\left(t_{1}\right) B_{a_{2}}\left(t_{2}\right) X_{a_{2}}\left(t_{2}\right) & B_{a_{1}}\left(t_{1}\right) Y_{a_{1}}\left(t_{1}\right) B_{a_{2}}\left(t_{2}\right) Y_{a_{2}}\left(t_{2}\right)\end{array}\right]$.
$=\left\{\begin{array}{ll}E\left[B_{a_{1}}\left(t_{1}\right) B_{a_{2}}\left(t_{2}\right)\right] \operatorname{Cov}\left[X_{a_{1}}\left(t_{1}\right), X_{a_{2}}\left(t_{2}\right)\right] & E\left[B_{a_{1}}\left(t_{1}\right) B_{a_{2}}\left(t_{2}\right)\right] \operatorname{Cov}\left[X_{a_{1}}\left(t_{1}\right), Y_{a_{2}}\left(t_{2}\right)\right] \\ E\left[B_{a_{1}}\left(t_{1}\right) B_{a_{2}}\left(t_{2}\right)\right] \operatorname{Cov}\left[Y_{a_{1}}\left(t_{1}\right), X_{a_{2}}\left(t_{2}\right)\right] & E\left[B_{a_{1}}\left(t_{1}\right) B_{a_{2}}\left(t_{2}\right)\right] \operatorname{Cov}\left[Y_{a_{1}}\left(t_{1}\right), Y_{a_{2}}\left(t_{2}\right)\right]\end{array}\right\}$
$=\left\{\begin{array}{cc}p_{a a_{2}} \operatorname{Cov}\left[X_{a_{1}}\left(t_{1}\right), X_{a_{2}}\left(t_{2}\right)\right] & p_{a, a_{2}} \operatorname{Cov}\left[X_{a_{1}}\left(t_{1}\right), \mu+A(\alpha) X_{a_{2}}\left(t_{2}\right)\right] \\ p_{a a_{2}} \operatorname{Cov}\left[\mu+A(\alpha) X_{a_{1}}\left(t_{1}\right), X_{a_{2}}\left(t_{2}\right)\right] & p_{a a_{2}} \operatorname{Cov}\left[\mu+A(\alpha) X_{a_{1}}\left(t_{1}\right), \mu+A(\alpha) X_{a_{2}}\left(t_{2}\right)\right]\end{array}\right\}$
$=\left\{\begin{array}{cc}p_{a_{1} a_{2}} C_{X_{a_{1}} X_{a_{2}}}\left(t_{1}-t_{2}\right) & p_{a_{1} a_{2}} C_{X_{a_{1} X_{a_{2}}}}\left(t_{1}-t_{2}\right) A(\alpha)^{T} \\ p_{a_{1} a_{2}} A(\alpha) C_{X_{a_{1} X_{a_{2}}}}\left(t_{1}-t_{2}\right) & p_{a_{1} a_{2}} A(\alpha) C_{X_{a_{1} X_{a_{2}}}}\left(t_{1}-t_{2}\right) A(\alpha)^{T}\end{array}\right\}$
$=p_{a_{1} a_{2}}\left[\begin{array}{cc}C_{a_{1} a_{2}}\left(t_{1}-t_{2}\right) & C_{a_{1} a_{2}}\left(t_{1}-t_{2}\right) A(\alpha)^{T} \\ A(\alpha) C_{a_{1} a_{2}}\left(t_{1}-t_{2}\right) & A(\alpha) C_{a_{1} a_{2}}\left(t_{1}-t_{2}\right) A(\alpha)^{T}\end{array}\right]$
from the stability and the independence then,
$\operatorname{Cov}\left\{\psi_{a_{1}}\left(t_{1}\right), \psi_{a_{2}}\left(t_{2}\right)\right\}=p_{a_{1} a_{2}}\left[\begin{array}{cc}c_{a_{1} a_{2}}(u) & c_{a_{1} a_{2}}(u) A(\alpha)^{T} \\ A(\alpha) c_{a_{1} a_{2}}(u) & A(\alpha) c_{a_{1} a_{2}}(u) A(\alpha)^{T}\end{array}\right]$,
and
$\operatorname{Cov}\left\{\psi_{a_{1}}\left(t_{1}\right), \psi_{a_{2}}\left(t_{2}\right)\right\}=$
$=p_{a a_{1} a_{2}}\left[\begin{array}{cc}\int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) \exp \{i v u\} d v & \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) \exp \{i v u\} d v A(\alpha)^{T} \\ A(\alpha) \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) \exp \{i v u\} d v & A(\alpha) \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) \exp \{i v u\} d v A(\alpha)^{T}\end{array}\right]$.

Definition: The complex normal distribution: Suppose
\mathbf{X} and \mathbf{Y} are random vectors in R^{k} such that $\mathbf{v e c}\left[\begin{array}{ll}\mathbf{X} & \mathbf{Y}\end{array}\right]$ is a $2 k$-dimensional normal vector. Then we say that the complex random vector $Z=X+i Y$ has the complex normal distribution. This distribution can be described with three parameters: $\mu=E(Z), \Gamma=E\left[(Z-\mu)(\bar{Z}-\bar{\mu})^{T}\right]$, $C=E\left[(Z-\mu)(Z-\mu)^{T}\right]$,
where Z^{T} denotes matrix transpose, and \bar{Z} denotes complex conjugate. Here the parameter μ can be an arbitrary k-dimensional complex vector, the covariance matrix Γ must be Hermitian and non-negative definite; the relation matrix C should be symmetric. Moreover, matrices Γ and C are such that the matrix $\bar{\Gamma}-\bar{C}^{T} \Gamma^{-1} C$ is also non-negative definite. Matrices Γ and C are related to the covariance matrices of \mathbf{X} and \mathbf{Y} via expressions
$V_{x x} \equiv E\left[\left(X-\mu_{x}\right)\left(X-\mu_{x}\right)^{T}\right]=\frac{1}{2} \operatorname{Re}[\Gamma+C]$,
$V_{x y} \equiv E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)^{T}\right]=\frac{1}{2} \operatorname{Im}[-\Gamma+C]$,
$V_{y x} \equiv E\left[\left(Y-\mu_{y}\right)\left(X-\mu_{x}\right)^{T}\right]=\frac{1}{2} \operatorname{Im}[\Gamma+C]$,
$V_{y y} \equiv E\left[\left(Y-\mu_{y}\right)\left(Y-\mu_{y}\right)^{T}\right]=\frac{1}{2} \operatorname{Re}[\Gamma-C]$,
and conversely
$\Gamma=V_{x x}+V_{y y}+i\left(V_{y x}-V_{x y}\right), \Gamma=V_{x x}-V_{y y}+i\left(V_{y x}-V_{x y}\right)$.

Theorem 3.2

Let $\psi_{a}(t)$ is missed observations on the stable stochastic process $\left[X_{a}(t) \quad Y_{a}(t)\right]^{T}, \quad a=1, \ldots, \min (r, s)$ and $B_{a}(t)$ is Bernoulli sequence of random variables which satisfies equations (3.3) and (3.4), Let $h_{a}^{(T)}(\lambda)$ be defined as (3.1), and $d_{a}^{(T)}(\lambda)$ satisfies assumption, then $h_{a}^{(T)}(\lambda)$ will be distributed approximately as,

$$
\begin{aligned}
& h_{a}^{(T)}(\lambda) \cong
\end{aligned}
$$

where

$$
\begin{align*}
& \Omega_{a_{1} a_{2}}^{(T)}\left(\lambda_{1}-v, \lambda_{2}-v\right)=(2 \pi)^{-1}\left[G_{a_{1} a_{2}}^{(T)}(0)\right]^{-1} \sum_{t_{1}=0}^{T-1} d_{a_{1}}^{(T)}\left(t_{1}\right) \sum_{t_{2}=0}^{T-1} d_{a_{2}}^{(T)}\left(t_{2}\right) \times \\
& \quad \times \exp \left\{-i\left[\left(\lambda_{1}-v\right) t_{1}-i\left(\lambda_{2}-v\right) t_{2}\right]\right\} \tag{3.9}
\end{align*}
$$

Proof

From equations (3.1)and (3.5) we have,

$$
\begin{equation*}
E\left\{h_{a}(t)\right\}=0, \tag{3.10}
\end{equation*}
$$

$$
\begin{aligned}
& \operatorname{Cov}\left\{h_{a_{1}}^{(T)}\left(\lambda_{1}\right), h_{a_{2}}^{(T)}\left(\lambda_{2}\right)\right\}= \\
& = \\
& \operatorname{Cov}\left\{\left[2 \pi \sum_{t_{1}=0}^{T-1}\left(d_{a_{1}}^{(T)}\left(t_{1}\right)\right)^{2}\right]^{-1 / 2} \sum_{t_{1}=0}^{T-1} d_{a_{1}}^{(T)}\left(t_{1}\right) \psi_{a_{1}}\left(t_{1}\right) \exp \left\{-i \lambda_{1} t_{1}\right\},\right. \\
& \\
& \left.,\left[2 \pi \sum_{t_{2}=0}^{T-1}\left(d_{a_{2}}^{(T)}\left(t_{2}\right)\right)^{2}\right]^{-1 / 2} \sum_{t_{2}=0}^{T-1} d_{a_{2}}^{(T)}\left(t_{2}\right) \psi_{a_{2}}\left(t_{2}\right) \exp \left\{-i \lambda_{2} t_{2}\right\}\right\} \\
& = \\
& \times(2 \pi)^{-1}\left[G_{a_{1} a_{2}}^{(T)}(0)\right]^{-1} \sum_{t_{1}=0}^{T-1} d_{a_{1}}^{(T)}\left(t_{1}\right) \exp \left\{-i \lambda_{1} t_{1}\right\} \sum_{t_{2}=0}^{T-1} d_{a_{2}}^{(T)}\left(t_{2}\right) \exp \left\{i \lambda_{2} t_{2}\right\} \times \\
& \times \\
& \operatorname{Cov}\left\{\psi_{a_{1}}\left(t_{1}\right), \psi_{a_{2}}\left(t_{2}\right)\right\} \\
& = \\
& p_{a_{1} a_{2}}(2 \pi)^{-1}\left[G_{a_{1} a_{2}}^{(T)}(0)\right]^{-1} \sum_{t_{1}=0}^{T-1} d_{a_{1}}^{(T)}\left(t_{1}\right) \exp \left\{-i \lambda_{1} t_{1}\right\} \times \\
& \\
& \quad \times \sum_{t_{2}=0}^{T-1} d_{a_{2}}^{(T)}\left(t_{2}\right) \exp \left\{i \lambda_{2} t_{2}\right\}\left[c_{x x}\left(t_{1}-t_{2}\right) \quad c_{x y}\left(t_{1}-t_{2}\right)\right. \\
& \left.c_{y x}\left(t_{1}-t_{2}\right) \quad A(\alpha) c_{x x}\left(t_{1}-t_{2}\right) A(\alpha)^{T}\right],
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Cov}\left\{h_{a_{1}}^{(T)}\left(\lambda_{1}\right), h_{a_{2}}^{(T)}\left(\lambda_{2}\right)\right\}=(2 \pi)^{-1}\left[G_{a_{1} a_{2}}^{(T)}(0)\right]^{-1} \sum_{t_{1}=0}^{T-1} d_{a_{1}}^{(T)}\left(t_{1}\right) \exp \left\{-i \lambda_{1} t_{1}\right\} \times \\
& \times \sum_{t_{2}=0}^{T-1} d_{a_{2}}^{(T)}\left(t_{2}\right) \exp \left\{i \lambda_{2} t_{2}\right\} \\
& \times p_{a, a_{2}}\left[\begin{array}{cc}
\int_{-\infty}^{\infty} f_{a, a_{2}}(v) \exp \left\{i v\left(t_{1}-t_{2}\right)\right\} d v & \int_{-\infty}^{\infty} f_{a, a_{2}}(v) \exp \left\{i v\left(t_{1}-t_{2}\right)\right\} d v A(\alpha)^{T} \\
A(\alpha) \int_{-\infty}^{\infty} f_{a, a_{2}}(v) \exp \left\{i v\left(t_{1}-t_{2}\right)\right\} d v & A(\alpha) \int_{-\infty}^{\infty} f_{a, a_{2}}(v) \exp \left\{i v\left(t_{1}-t_{2}\right)\right\} d v A(\alpha)^{T}
\end{array}\right]
\end{aligned}
$$

$=(2 \pi)^{-1}\left[G_{a_{1} a_{2}}^{(T)}(0)\right]^{-1} \sum_{t_{1}=0}^{T-1} d_{a_{1}}^{(T)}\left(t_{1}\right) \sum_{t_{2}=0}^{T-1} d_{a_{2}}^{(T)}\left(t_{2}\right) \times$
$\times p_{a_{1} a_{2}} \exp \left\{-i \lambda_{1} t_{1}+i \lambda_{2} t_{2}+i v t_{1}-i v t_{2}\right\}\left\{\begin{array}{cc}\int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) d v & \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) A(\alpha)^{T} d v \\ A(\alpha) \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) d v & A(\alpha) \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) A(\alpha)^{T} d v\end{array}\right]$
$=(2 \pi)^{-1}\left[G_{a_{1} a_{2}}^{(T)}(0)\right]^{-1} \sum_{t_{1}=0}^{T-1} d_{a_{1}}^{(T)}\left(t_{1}\right) \sum_{t_{2}=0}^{T-1} d_{a_{2}}^{(T)}\left(t_{2}\right) \times$
$\times p_{a_{1} a_{2}} \exp \left\{-i\left[\left(\lambda_{1}-v\right) t_{1}-i\left(\lambda_{2}-v\right) t_{2}\right]\right\}\left[\begin{array}{cc}\int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) d v & \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) A(\alpha)^{T} d v \\ A(\alpha) \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) d v & A(\alpha) \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v) A(\alpha)^{T} d v\end{array}\right]$
$=\left[\begin{array}{ll}\beta_{1} & \beta_{2} \\ \beta_{3} & \beta_{4}\end{array}\right]$
where
$\beta_{1}=p_{a_{1} a_{2}} \int_{-\infty}^{\infty} f_{a_{1} a_{2}}(v)\left\{(2 \pi)^{-1}\left[G_{a_{1} a_{2}}^{(T)}(0)\right]^{-\sum_{1}=0} \sum_{t_{1}}^{T-1} d_{a_{1}}^{(T)}\left(t_{1}\right) \sum_{t_{2}=0}^{T-1} d_{a_{2}}^{(T)}\left(t_{2}\right) \times\right.$ $\left.\times \exp \left\{-i\left[\left(\lambda_{1}-v\right) t_{1}-i\left(\lambda_{2}-v\right) t_{2}\right]\right\}\right\} d v$

$$
=p_{a_{1} a_{2}} \int_{R} f_{a_{1} a_{2}}(v) \Omega_{a_{1} a_{2}}^{(T)}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v
$$

similarly
$\beta_{2}=p_{a_{1} a_{2}} \int_{R} f_{a_{1} a_{2}}(v) A(\alpha)^{T} \Omega_{a_{1} a_{2}}^{(T)}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v$,
$\beta_{3}=p_{a_{1} a_{2}} \int_{R} A(\alpha) f_{a_{1} a_{2}}(v) \Omega_{a_{1,} a_{2}}^{(T)}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v$,
and
$\beta_{4}=p_{a_{1} a_{2}} \int_{R} A(\alpha) f_{a_{1} a_{2}}(v) A(\alpha)^{T} \Omega_{a_{1} a_{2}}^{(T)}\left(\lambda_{1}-v, \lambda_{2}-v\right) d v$
Now from equation (3.10) and (3.11) then equation (3.8) is obtained which complete the proof.

From equation (3.11) we can drive the following corollary by putting $\lambda_{1}=\lambda_{2}=\lambda, \lambda_{1}, \lambda_{2}, \lambda \in R$.

Corollary 3.1

let $h_{a}^{(T)}(\lambda), a=1,2, \ldots, \min (r, s), \lambda \in R$ be defined as (3.1), then the dispersion of $h_{a}^{(T)}(\lambda)$
satisfies the following property :

and

$$
\Omega_{a a}^{(T)}(\lambda)=(2 \pi)^{-1}\left[G_{a a}^{(T)}(0)\right]^{-1}\left|G_{a}^{(T)}(\lambda)\right|^{2},
$$

where $G_{a}^{(T)}(\lambda), a=1,2, \ldots, \min (r, s), \lambda \in R$ be defined in Assumption.

Proof

From equation (3.11), we get
$D h_{a}^{(T)}(\lambda)=p_{a a}\left[\begin{array}{cc}\int_{R} f_{a \alpha}(v) \Omega_{a a}^{(T)}(\lambda-v) d v & \int_{R} f_{a a}(v) A(\alpha)^{T} \Omega_{a a}^{(T)}(\lambda-v) d v \\ A_{R}^{(\alpha)} f_{a a}(v) \Omega_{a a}^{(T)}(\lambda-v) d v & \int_{R}^{A(\alpha) f_{a c}(v) A(\alpha)^{T} \Omega_{a a}^{(T)}(\lambda-v) d v}\end{array}\right]$,
When
$\lambda_{1}=\lambda_{2}=\lambda, \lambda \in R$ and $a_{1}=a_{2}=a, a=1, \ldots, \min (r, s)$.
By putting $\lambda-v=\gamma$, then formula (3.12) is obtained.

Theorem 3.3

For any $\lambda \in R$, the function $\Omega_{a a}^{(T)}(\lambda)$, $a=1, \ldots, \min (r, s)$ is the kernel that satisfies the following properties:

1. $\int_{-\infty}^{\infty} \Omega_{a a}^{(T)}(\lambda) d \lambda=1, a=1, \ldots, \min (r, s), \quad \lambda \in R$
2. $\operatorname{Lim}_{T \rightarrow \infty} \int_{-\infty}^{-\delta} \Omega_{a a}^{(T)}(\lambda) d \lambda=\operatorname{Lim}_{T \rightarrow \infty} \int_{\delta}^{\infty} \Omega_{a a}^{(T)}(\lambda) d \lambda=0$,

$$
\begin{equation*}
, \forall \delta>0, a=1, \ldots, \min (r, s), \lambda \in R \tag{3.14}
\end{equation*}
$$

3. $\operatorname{Lim}_{T \rightarrow \infty} \int_{-\delta}^{\delta} \Omega_{a a}^{(T)}(\lambda) d \lambda=1$,

$$
\begin{equation*}
\forall a=1, \ldots, \min (r, s), \delta>0, \quad \lambda \in R . \tag{3.15}
\end{equation*}
$$

Theorem 3.4

If the spectral density function $f_{a a}(X), a=1, \ldots, \min (r, s)$, $X \in R$ is bounded continuous at a point $X=\lambda, \lambda \in R$ and the function $\Omega_{a a}^{(T)}(X), a=1, \ldots, \min (r, s), \quad X \in R$ satisfies the properties of theorem 3.3, then,
$\operatorname{Lim}_{T \rightarrow \infty} D h_{a}^{(T)}(\lambda)=p_{a a}\left[\begin{array}{cc}f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\ A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}\end{array}\right]$,

$$
\begin{equation*}
, a=1, \ldots, \min (r, s) . \tag{3.16}
\end{equation*}
$$

Proof

To prove formula (3.16), we must prove that
$\operatorname{Lim}_{T \rightarrow \infty}\left|D h_{a}^{(T)}(\lambda)-p_{a a}\left[\begin{array}{cc}f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\ A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}\end{array}\right]\right|=0$,
Now , from corollary 3.1 we have,

$$
\begin{aligned}
& \left|D h_{a}^{(T)}(\lambda)-p_{a a}\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right]\right| \leq \\
& \leq p_{a a} \int_{-\infty}^{\infty} \left\lvert\,\left[\begin{array}{cc}
f_{a a}(\lambda-\gamma) & f_{a a}(\lambda-\gamma) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda-\gamma) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}
\end{array}\right]-\right.
\end{aligned}
$$

$$
\left.-\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \right\rvert\, \Omega_{a a}^{(T)}(\gamma) d \gamma \leq
$$

$$
\leq p_{a a}^{-\delta} \int_{-\infty}^{-\delta} \left\lvert\,\left[\begin{array}{cc}
f_{a a}(\lambda-\gamma) & f_{a a}(\lambda-\gamma) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda-\gamma) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}
\end{array}\right]-\right.
$$

$$
\left.-\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \right\rvert\, \Omega_{a a}^{(T)}(\gamma) d \gamma+
$$

$$
+p_{a a} \int_{-\delta}^{\delta} \left\lvert\,\left[\begin{array}{cc}
f_{a a}(\lambda-\gamma) & f_{a a}(\lambda-\gamma) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda-\gamma) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}
\end{array}\right]-\right.
$$

$$
\left.-\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \right\rvert\, \Omega_{a a}^{(T)}(\gamma) d \gamma+
$$

$$
\left.+p_{a a}^{\alpha}\right]_{\delta}^{\alpha} \left\lvert\,\left[\begin{array}{cc}
f_{a a}(\lambda-\gamma) & f_{a a}(\lambda-\gamma) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda-\gamma) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}
\end{array}\right]-\right.
$$

$$
\left.-\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \right\rvert\, \Omega_{a a}^{(T)}(\gamma) d \gamma
$$

$$
=J_{1}+J_{2}+J_{3} .
$$

Since $f_{a, a_{2}}(\gamma)$ is continuous at a point $\gamma=\lambda$, $a_{1}, a_{2}=1, \ldots, \min (r, s), \lambda \in R$, then we get
$J_{2}=p_{a a} \int_{-\delta}^{\delta}\left[\begin{array}{cc}f_{a a}(\lambda-\gamma) & f_{a a}(\lambda-\gamma) A(\alpha)^{T} \\ A(\alpha) f_{a a}(\lambda-\gamma) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}\end{array}\right]-$

$$
\begin{aligned}
& \left.-\left[\begin{array}{cc}
f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \right\rvert\, \Omega_{a a}^{(T)}(\gamma) d \gamma \\
& =p_{a a} \int_{-d}^{s}\left[\begin{array}{cc}
f_{a a}(\lambda-\gamma)-f_{a a}(\lambda) & f_{a a}(\lambda-\gamma) A(\alpha)^{T}-f_{a a}(\lambda) A(\alpha)^{T} \\
A(\alpha) f_{a a}(\lambda-\gamma)-A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda-\gamma) A(\alpha)^{T}-A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}
\end{array}\right] \times
\end{aligned}
$$

$\times \Omega_{a a}^{(T)}(\gamma) d \gamma \leq \varepsilon \int_{-\delta}^{\delta} \Omega_{a a}^{(T)}(\gamma) d \gamma$

$$
\leq \varepsilon \int_{-\infty}^{\infty} \Omega_{a a}^{(T)}(\gamma) d \gamma
$$

Hence, $J_{2} \leq \varepsilon$. Now J_{2} is very small according to any ε is very small, consequently $J_{2}=0$ Suppose that $f_{a a}(\lambda) a=1, \ldots, \min (r, s), \lambda \in R$ is bounded by a constant M , then

$$
J_{1} \leq 2 M \int_{-\infty}^{-\delta} \Omega_{a a}^{(T)}(\gamma) d \gamma \xrightarrow[T \rightarrow \infty]{ } 0
$$

according to property (3.14). similarly $J_{3} \longrightarrow T \rightarrow \infty$, therefore, $\left\lvert\, D h_{a}^{(T)}(\lambda)-p_{a a}\left[\begin{array}{cc}f_{a a}(\lambda) & f_{a a}(\lambda) A(\alpha)^{T} \\ A(\alpha) f_{a a}(\lambda) & A(\alpha) f_{a a}(\lambda) A(\alpha)^{T}\end{array}\right] \xrightarrow[T \rightarrow \infty]{ } 0\right.$. which completes the proof of the theorem.

Lemma 3.1

If the data window function $d_{a}^{(T)}(t), t \in R, a=\overline{1, r}$ is bounded and has bounded variations and equal zero outside the interval $[0, T-1]$; then

$$
\begin{equation*}
\sum_{t=0}^{T-1} d_{a}^{(T)}(t) \sim \mathrm{T} \int_{0}^{1} d_{a}^{(T)}(u) d u \tag{3.17}
\end{equation*}
$$

where,

$$
\begin{equation*}
\frac{1}{T} \sum_{t=0}^{T-1} d_{a}^{(T)}(t) \longrightarrow{ }_{T \rightarrow \infty} \int_{0}^{1} d_{a}^{(T)}(u) d u, a=\overline{1, r}, T=1,2, \ldots \tag{3.18}
\end{equation*}
$$

Lemma 3.2

Suppose $d_{a}^{(T)}(t), t \in R, \quad a=\overline{1, r}$ is bounded by a constant L and satisfying the Lipschitz condition,

$$
\begin{align*}
& \sum_{u=0}^{T-1}\left|d_{a}^{(T)}(t+u)-d_{a}^{(T)}(t)\right|- \\
& \quad-\quad \sum_{t=0}^{T-1} d_{a_{1}}^{(T)}(t) d_{a_{2}}^{(T)}(t) \exp \{-i \lambda t\} \leq \varepsilon|u|, \tag{3.19}
\end{align*}
$$

then,

$$
\begin{equation*}
\left|\sum_{t=0}^{T-1} d_{a_{1}}^{(T)}(u+t) d_{a_{2}}^{(T)}(t) \exp \{-i \lambda t\}-|\leq L \varepsilon| u\right|, \tag{3.20}
\end{equation*}
$$

for all constant $\varepsilon, u=\overline{[-(T-1),(T-1)}]$ and $\lambda \in[-\pi, \pi]$.

Lemma 3.3

For all $\lambda_{1}, \lambda_{2} \in[-\pi, \pi],\left(\lambda_{1}-\lambda_{2}\right) \neq(\bmod 2 \pi)$ and $d_{a}^{(T)}(t), t \in R, a=1, \ldots, \min (r, s)$ is bounded by a constant L and satisfying Lipschitz condition (3.19), then,
$\operatorname{Cov}\left\{h_{a_{1}}^{(T)}\left(\lambda_{1}\right), h_{a_{2}}^{(T)}\left(\lambda_{2}\right)\right\} \leq \frac{L \varepsilon}{2 \pi \sqrt{\sum_{t_{1}, t_{2}=0}^{T-1}\left(d_{a_{1}}^{(T)}\left(\lambda_{1}\right)\right)^{2}\left(d_{a_{2}}^{(T)}\left(\lambda_{2}\right)\right)^{2}}} \times$
$\times\left\{\frac{1}{L c\left|\left(\lambda_{1}-\lambda_{2}\right) / 2\right|} \sum_{\tau=-T+1)}^{T-1}\left|C_{a_{1} a_{2}}(u)\right|+\sum_{\tau=-T+1}^{T-1}\left|C_{a_{1} a_{2}}(u)\right|[|u|+1]\right\},($
for all $a_{1}, a_{2}=1, \ldots, \min (r, s)$.

Theorem 3.5

For all $\lambda_{1}, \lambda_{2} \in[-\pi, \pi],\left(\lambda_{1}-\lambda_{2}\right) \neq(\bmod 2 \pi)$ and $d_{a}^{(T)}(t), t \in R, a=1, \ldots, \min (r, s)$ is bounded and

$$
\begin{equation*}
\sum_{\tau=-\infty}^{\infty}[|u|+1]\left|C_{a_{1} a_{2}}(u)\right|<\infty \tag{3.22}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \operatorname{Cov}\left\{h_{a_{1}}^{(T)}\left(\lambda_{1}\right), h_{a_{2}}^{(T)}\left(\lambda_{2}\right)\right\}=0 \tag{3.23}
\end{equation*}
$$

for all $a_{1}, a_{2}=1, \ldots, \min (r, s)$.

The proof comes directly from Lemma 3.3 and Lemma 3.1.

4.APPLICATIONS

We will apply our theoretical study in two cases in climate and economy as in the following sections.

4.1.Studying the temperature and solar radiation

The data manipulated in this research make up a monthly chronic series that represents the average of the monthly temperature and solar radiation in Tripoli in Libya. The data is extracted from the meteorological centre of Tripoli, for the period from January 2005 to December 2013.

4.1.1.Studying the temperature

In this study we will comparison between our results, model of strictly stability time series (temperature) with some missing observations and the classical results, where all observations are available.
$\operatorname{Let} \Phi_{a}(t)=B_{a}(t) X_{a}(t), a=1,2, \ldots \ldots, r$, where
$X_{a}(t),(t=0, \pm 1, \ldots .$.$) be a strictly stability r-vector valued$ time series and $B_{a}(t)$ is Bernoulli sequence of independent random variable of $X_{a}(t)$ which satisfies equations (3.3) and (3.4), we suppose that the data $X_{a}(t), t=(1,2, \ldots . ., T]$ is the average of the monthly temperature, where all observations are available, $B=1, \Phi_{a}(t)=X_{a}(t)$, which is the classical case suppose that there is some missing observations in a random way, i.e., $B=0$, table 4.1 .1 shows the comparison of these results with and without missed observations.

Table-4.1.1: The comparison of the results with and without missed observations

Proof

4.1.2.Studying the solar radiation

In this study we will comparison between our results, model of strictly stability time series (Solar Radiation) with some missing observations and the classical results, where all observations are available.

Let $\phi_{a}(t)=B_{a}(t) Y_{a}(t), a=1,2, \ldots \ldots ., s, \quad$ where $Y_{a}(t)$, $t=0, \pm 1, \ldots .$.$) , be a strictly stability s-vector valued time series$ and $B_{a}(t)$ is Bernoulli sequence of random variable which is stochastically independent of $Y_{a}(t)$ which satisfies equations (3.3) and (3.4), we suppose that the data $Y_{a}(t), t=(1,2, \ldots, T]$ is the average of the monthly temperature, where all observations are available, $B=1, \phi_{a}(t)=Y_{a}(t)$, which is the classical case, suppose that there is some missing observations in a random way, i.e., $B=0$, table 4.1.2 shows the comparison of these results with and without missed observations.

Table-4.1.2: The comparison of the results with and without missed observations of the solar radiation

Series without missed observations	Series with missed observations
Time Series Plot of solar(Xt)	rimos seris Plotot tesest
Autocorrelation Function for Def12LnXt (with 5\% significance imis for the autocorrelations)	Autocorrelation Function for def12X**t (with 5% significance limits for the autocorrelations)
Partial Autocorrelation Function for Def12LnXt (with 5\% significance limits for the partial autocorrelations)	Partial Autocorrelation Function for def $12 X^{* *} t$ (with 5% significance limits for the partial autocorrelations) PACF of the seasonal difference
PACF of the seasonal difference	
ARIMA Model: solar radiation without missed observations	ARIMA Model: solar radiation with missed observations
$A R I M A(3,0,0) \times(0,1,2) 12$	$\operatorname{ARIMA}(3,0,0) \times(0,1,2) 12$
Final Estimates of Parameters	Final Estimates of Parameters
Type Coef SE Coef T P	Type Coef SE Coef T P
$\begin{array}{llllll}\text { AR } & 1 & 0.6443 & 0.1035 & 6.22 & 0.000\end{array}$	$\begin{array}{llllll}\text { AR } & 1 & 0.5507 & 0.0974 & 5.65 & 0.000\end{array}$
$\begin{array}{llllll}\text { AR } & 2 & 0.1997 & 0.1218 & 1.64 & 0.105\end{array}$	$\begin{array}{llllll}\text { AR } & 2 & 0.4379 & 0.1044 & 4.19 & 0.000\end{array}$

AR $3-0.3299$	0.1004	-3.29	0.001	AR $3-0$.	0.4197	0.0970	-4.33	0.000
SMA 120.9057	0.1119	8.09	0.000	SMA 121.0	1.0427	0.1089	9.58	0.000
SMA $24-0.0570$	0.1637	-0.35	0.729	SMA $24-0$	-0.2015	0.1577	-1.28	0.205
Constant -0.1524	0.8091	1-0.19	0.851	Constant -0	-0.0518	0.7478	-0.070	0.945
Differencing: 0 regular, 1 seasonal of order 12				Differencing: 0 regular, 1 seasonal of order 12				
Number of observations: Original series 108, after differencing 96				Number of observations: Original series 108, after differencing 96				
Residuals: $\mathrm{SS}=$ excluded)	113197	(back for	recasts	Residuals: excluded)	$\mathrm{SS}=1$	122927	back fore	ecasts
$\mathrm{MS}=1258$	DF $=9$				MS =	1366	$D F=90$	
Modified Box-Pie Square statistic	ierce (Lju	jung-Box)	Chi-	Modified Square sta	Box-Pie atistic	erce (Lju	ung-Box)	Chi-
Lag 12	24	36	48	Lag	12	24	36	48
Chi-Square 10.0	16.0	35.1	44.7	Chi-Square	re 8.5	21.3	41.1	51.2
DF 6	18	30	42	DF	6	18	30	42
P-Value 0.123	0.589	0.240	0.358	P-Value	0.206	0.266	0.085	0.15

4.1.3. Studying The Regression Between Solar

Radiation And Temperature

In this section we adjust the regression model which represents the relationship between Monthly rate of solar radiation in watt $/ \mathrm{m}^{\wedge} 2$ rate and the average monthly temperature in the period from 2005 to 2013

In this study we will comparison between our results with some missing observations and the classical results where all observations are available.

Let $Z(t)=\left[\begin{array}{ll}X(t) & Y(t)\end{array}\right]^{T}$ where $X(t)$ is the series of average of temperature and $Y(t)$ is the series of the average of solar radiation, first we consider that the observations are available $P=1, \psi(t)=B(t) Z(t)=p Z(t)=Z(t)$, then consider that there are some missing of observations randomly, $P=0$. We used SPSS,MINITAB to investigate our results which is shown in table 4.1.3

Table - 4.1.3: The comparison of the results with and without missed observations of the regression analysis

Without missed observations					With missed observations				
The regression equation is$\text { solar radiation }=-10.4+12.7 \text { temperature }$					The regression equation is Solar $=-9.9+12.7$ Temperature				
Predictor	Coef	SE Coef	T	P	Predictor	Coef	SE Coef	T	P
Constant	-10.42	22.36	-0.47	0.642	Constant	-9.94	22.71	-0.44	0.663

4.1.4.Conclusion

1. Tables 4.1.1 and 4.1.2 shows the study of time series with missed observations and the original time series and we investigated that they have the same results.
2. Table 4.1.3 shows the study of regression model between Monthly average of solar radiation and average monthly temperature with some missed observations which had the same results of the study of the classical regression model.

4.2. Studying the Export and the Gross domestic product

The data manipulated in this research make up chronic series that represents the Export and the Gross domestic product. The data is extracted from the Central Bank of Libya for the period from 1970 to 2012.

4.2.1. Studying the Export

In this study we will comparison between our results, model of strictly stability time series (Export) with some missing observations and the classical results, where all observations are available.

Let $\Phi_{a}(t)=B_{a}(t) X_{a}(t), a=1,2, \ldots \ldots, r$, where $X_{a}(t),(t=0, \pm 1, \ldots .$.$) be$ a strictly stability r-vector valued time series and $B_{a}(t)$ is

Bernoulli sequence of independent random variable of $X_{a}(t)$ which satisfies equations (3.3) and (3.4), we suppose that the data $X_{a}(t),(t=(1,2, \ldots \ldots, T]$ is the Export, where all observations are available, $B=1, \Phi_{a}(t)=X_{a}(t)$, which is the classical case suppose that there is some missing observations in a random way, i.e., $B=0$, table 4.2 .1 shows the comparison of these results with and without missed observations.

Table -4.2.1: The comparison of the results with and without missed observations

Series without missed observations				Series with missed observations			
Times Series Plotof fexpor X (t)				Time Series Plotof $\times(t)$			
Autocorrelation Function for $\mathbf{X}(\mathbf{t}-\mathbf{2})$ (with 5% significance limits for the autocorrelations)				Autocorrelation Function for $\mathbf{X}^{\wedge}(\mathbf{t}-\mathbf{2})$ (with 5% significance limits for the autocorrelations)			
(with 5% significance limits for the partial autocorrelations)							
PACF of the second difference							
ARIMA Model: Export				ARIMA Model: Export			
ARIMA (1,	1)			ARIMA (1,2	$2,1)$		
Final Estimates of Parameters				Final Estimates of Parameters			
Type Coef	SE Coef	T	P	Type Coef	SE Coef	T	P
AR 1 -1.1606	0.1112	-10.44	0.000	AR 1 -1.1559	0.1081	-10.69	0.000
MA 10.0554	0.2152	0.26	0.798	MA $1-0.0757$	0.2246	-0.34	0.738
Constant -197	1271	-0.15	0.878	Constant 776	1596	0.49	0.630
Differencing: 2 regular differences				Differencing: 2 regular differences			
Number of observations: Original series 43, after differencing41				Number of observations: Original series 43 , after differencing 41			

Residuals: SS=2806388520 (back forecasts excluded)				Residuals: $\mathrm{SS}=3338821601$ (back forecasts excluded)				
$\mathrm{MS}=73852329 \mathrm{DF}=38$				$\mathrm{MS}=87863726 \quad \mathrm{DF}=38$				
Modified Box-Pierce (Ljung-Box) ChiSquare statistic				Modified Box-Pierce (Ljung-Box) ChiSquare statistic				
Lag 12	24	36	- 48	Lag	12	24	36	48
Chi-Square	12.8	13.3	14.7	Chi-Square	7.6	7.8	8.1	
	9	21	33	DF	9	21	33	
P-Value	0.173	0.899	0.998	P-Value	0.570	0.996	1.000	

4.2.2. Studying the Gross domestic product

In this study we will comparison between our results, model of strictly stability time series (Gross domestic product) with some missing observations and the classical results, where all observations are available.

Let $\phi_{a}(t)=B_{a}(t) Y_{a}(t), a=1,2, \ldots \ldots, s$, where $Y_{a}(t),(t=0, \pm 1, \ldots . .$.$) , be a$ strictly stability s-vector valued time series and $B_{a}(t)$ is Bernoulli sequence of random variable which is stochastically independent of $Y_{a}(t)$ which satisfies equations (3.3) and (3.4), we suppose that the data $Y_{a}(t), t=(1,2, \ldots . ., T]$ is the Gross domestic product, where all observations are available, $B=1, \phi_{a}(t)=Y_{a}(t)$, which is the classical case, suppose that there is some missing observations in a random way, i.e, $B=0$, table 4.2 .2 shows the comparison of these results with and without missed observations.

Table-4.2.2 The comparison of the results with and without missed observations of the Gross domestic product

Series without missed observations	Series with missed observations

4.2.3. Studying the regression between Gross domestic
 product and Export

In this section we adjust the regression model which represents the relationship between the Gross domestic product and Export in the period from 1970 to 2012 million Libyan dinars.

In this study we will comparison between our results with some missing observations and the classical results where all observations are available.

Let $Z(t)=\left[\begin{array}{ll}X(t) & Y(t)\end{array}\right]^{T}$ where $X(t)$ is the series of the Export average and $Y(t)$ is the series of the Gross domestic product, first we consider that the observations are
available $P=1, \psi(t)=B(t) Z(t)=p Z(t)=Z(t)$, then consider that there are some missing of observations randomly, $P=0$. We used SPSS,MINITAB to investigate our results which is shown in table 4.2.3

Table-4.2.3: The comparison of the results with and without missed observations of the regression analysis

Without missed observations	With missed observations
Regression Analysis: $\mathrm{Y}(\mathrm{t})$ versus X(t)	Regression Analysis: $\mathrm{Y}^{\wedge}(\mathrm{t})$ versus $\mathrm{X}^{\wedge}(\mathrm{t})$
The regression equation is	The regression equation is
$\mathrm{Y}(\mathrm{t})=4029+1.52$ Export $\mathrm{X}(\mathrm{t})$	$\mathrm{Y}^{\wedge}(\mathrm{t})=4013+1.55 \mathrm{X}^{\wedge}(\mathrm{t})$
Predictor Coef SE Coef T P	Predictor Coef SE Coef T P
$\begin{array}{lllll}\text { Constant } & 4029.2 & 724.2 & 5.56 & 0.000\end{array}$	$\begin{array}{lllll}\text { Constant } & 4012.5 & 807.0 & 4.97 & 0.000\end{array}$
Export X(t) 1.524880 .0287253 .100 .000	Export $\mathrm{X}^{\wedge}(\mathrm{t}) 1.55440 .0327347 .490 .000$
$\begin{aligned} & \mathrm{S}=4004.51 \mathrm{R}-\mathrm{Sq}=98.6 \% \mathrm{R}-\mathrm{Sq}(\mathrm{adj})= \\ & 98.5 \% \end{aligned}$	$\begin{aligned} & \mathrm{S}=4449.61 \mathrm{R}-\mathrm{Sq}=98.2 \% \mathrm{R}-\mathrm{Sq}(\mathrm{adj})= \\ & 98.2 \% \end{aligned}$
Analysis of Variance	Analysis of Variance
Source DF SS MS	Source DF SS MS
Regression 14520796294145207962941	Regression 14464641963944646419639
F	F P
$2819.14 \quad 0.00$	$2254.98 \quad 0.00$
Residual Error 4165747949416036085	Residual Error 4181176098419799048
Total 4245865442435	Total 4245458180623
Probability Plot of RESI2	Probablily Ploto of RESB Normal \square
Normal-plot of standardized Residuals	Normal-plot of standardized Residuals

4.2.4. Conclusion

1. Tables 4.2 .1 and 4.2 .2 shows the study of time series with missed observations and the original time series and we investigated that they have the same results.
2. Table 4.2 .3 shows the study of regression models between Gross domestic product and Export with some missed observations which had the same results of the study of the classical regression models.

REFERENCES

[1] D.R. Brillinger and M. Rosenblatt, "Asymptotic theory of estimates of k-th order spectra", in: B.Harris (Ed.), "Advanced Seminar on Spectral Analysis of Time Series", Wiley, New York, 1967,pp. 153-188.
[2] D.R. Brillinger, 'Asymptotic properties of spectral estimates of second order', Biometrika 56 (2),(1969) 375-390.
[3] R. Dahlhaus, "On a spectral density estimate obtained by averaging periodograms'', J. Appl. Probab. 22 (1985) 592-610.
[4] M.A. Ghazal, E.A. Farag," Estimating the spectral density, autocovariance function and spectral measure of continuous time stationary processes'', in: Annual Conference, ISSR, Cairo, vol. 33, no. part I, 1998, pp. 120.
[5] M.A. Ghazal, "On a spectral density estimate on noncrossed intervals observation", Int. J. Appl. Math. 1 (8)(1999) 875-882.
[6] D.R. Brillinger, Time series data analysis and theory; SIAM,2001.
[7] A.A.M. Teamah, H.S. Bakouch,'"Multitaper Multivariate spectral estimators of time series with distorted observations", International Journal of Pure and Applied Mathematics, Vol. 14 , No. 1 (2004),45-57.
[8] Chris Chatfield, The Analysis of Time Series, An Introduction, Sixth Edition, 2005.
[9] M.A. Ghazal, Farag, E.A,El-Desokey, "Some properties of the discrete expanded finite Fourier transform with missed Observations", Ain Shams University, Faculty of Engineering, No.3,2005,pp.887-902.
[10] M.A.Ghazal ,G.S. Mokaddis and A.El-Desokey, 'Spectral Analysis of strictly stationary continuous time series"; Journal of Mathematical Sciences; Vol.3,No.1(2009) 115.
[11] M.A.Ghazal ,G.S. Mokaddis and A.El-Desokey, "Asymptotic Properties of spectral Estimates of SecondOrder with Missed Observations''; Journal of Mathematics and statistics 6(1):10-16,2010.

