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Abstract - In end-to-end data transfers, there are several 
factors affecting the data transfer throughput, such as the 
network characteristics (e.g. network bandwidth, round-trip-
time, background traffic); end-system characteristics (e.g. NIC 
capacity, number of CPU cores and their clock rate, number of 
disk drives and their I/O rate); and the dataset characteristics 
(e.g. average file size, dataset size, file size distribution). 
Optimization of big data transfers over inter-cloud and intra-
cloud networks is a challenging task that requires joint-
consideration of all of these parameters. This optimization 
task becomes even more challenging when transferring 
datasets comprised of heterogeneous file sizes (i.e. large files 
and small files mixed). Previous work in this area only focuses 
on the end-system and network characteristics however does 
not provide models regarding the dataset characteristics. In 
this study, we analyze the effects of the three most important 
transfer parameters that are used to enhance data transfer 
throughput: pipelining, parallelism and concurrency. We 
provide models and guidelines to set the best values for these 
parameters and present two different transfer optimization 
algorithms that use the models developed. The tests conducted 
over high-speed networking and cloud testbeds show that our 
algorithms outperform the most popular data transfer tools 
like Globus Online and UDT in majority of the cases. 
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1. INTRODUCTION  
 
1.1 Existing System 
 
Most scientific cloud applications require movement of large 
datasets either inside a data center, or between multiple data 
centers. Transferring large datasets especially with 
heterogeneous file sizes (i.e. many small and large files 
together) causes inefficient utilization of the available 
network bandwidth. Small file transfers may cause the 
underlying transfer protocol not reaching the full network 
utilization due to short-duration transfers and connection 
start up/tear down overhead; and large file transfers may 
suffer from protocol inefficiency and end-system limitations. 
Application-level TCP tuning parameters such as pipelining, 
parallelism and concurrency are very affective in removing 
these bottlenecks, especially when used together and in 
correct combinations. However, predicting the best 
combination of these parameters requires highly 
complicated modeling since incorrect combinations can 

either lead to overloading of the network, inefficient 
utilization of the resources, or unacceptable prediction 
overheads. 
 

1.2 Definition 
 
Among application level transfer tuning parameters, 
pipelining specifically targets the problem of transferring 
large numbers of small files. It has two major goals: first, to 
prevent the data channel idleness and to eliminate the idle 
time due to control channel conversations in between the 
consecutive transfers. Secondly, pipelining prevents TCP 
window size from shrinking to zero due to idle data channel 
time if it is more than one Round Trip Time (RTT). In this 
sense, the client can have many outstanding transfer 
commands without waiting for the “226 Transfer Successful” 
message. For example, if the pipelining level is set to four in 
GridFTP, five outstanding commands are issued and the 
transfers are lined up back-to-back in the same data channel. 
Whenever a transfer finishes, a new command is issued to 
keep the pipelining queue full. In the latest version of 
GridFTP, this value is set to 20 statically by default and does 
not allow the user to change it. In Globus Online [2], this 
value is set to 20 for more than 100 files of average 50MB 
size, 5 for files larger than 250MB and in all other cases it is 
set to 10. Unfortunately, setting static parameters based on 
the number of files and file sizes is not affective in most 
cases, since the optimal pipelining level also depends on the 
network characteristics such as bandwidth, RTT, and 
background traffic. Using parallel streams is a very popular 
method for overcoming the inadequacies of TCP in terms of 
utilizing the high-bandwidth networks and has proven itself 
over socket buffer size tuning techniques [3], [4], [5], [6], [7], 
[8]. With parallel streams, portions of a file are sent through 
multiple TCP streams and it is possible to achieve multiples 
of the throughput of a single stream. Setting the optimal 
parallelism level is a very challenging task and several 
models have been proposed in the past [9], [10], [11], [12], 
[13], [14], [15], [16]. The Mathis equation[17] states that the 
throughput of a TCP stream(BW) depends on the Maximum 
Segment Size(MSS), Round Trip Time(RTT), a constant(C) 
and packet loss rate(p). 
BW = (MSS × C) / (RTT × √p)                                                                                       
(1) 
As the packet loss rate increases, the throughput of the 
stream decreases. The packet loss rate can be random in 
under-utilised networks however when there is congestion, 
it increases dramatically. In [9], a parallel stream model 
based on the Mathis equation is given.  
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BWagg <= (MSS × C) / RTT [1 / √p1 ... 1 / √pn] = n (MSS × 
C)/(RTT × √p)              (2) 
However excessive use of parallel streams can increase the 
packet loss rate dramatically, causing the congestion 
avoidance algorithm of TCP to decrease the sending rate 
based on the losses encountered. Therefore, the packet loss 
happening in our case occurs due to congestion. In our 
previous study[11], we presented a model to find the 
optimal level of parallelism based on the Mathis throughput 
equation. Therefore, in Globus Online[2], the parallelism 
level is set to 2, 8 and 4 respectively for the cases mentioned 
in the second paragraph above. In the context of transfer 
optimization, concurrency refers to sending multiple files 
simultaneously through the network channel. In [18], the 
effects of concurrency and parallelism were compared for 
large file transfers. Concurrency is especially good for small 
file transfers, and overcoming end system bottlenecks such 
as CPU utilisation, NIC bandwidth, parallel file system 
characteristics[19](e.g. Lustre file system distributes files 
evenly and can provide more throughput in multi-file 
transfers). The Stork data scheduler [20], [21] has the ability 
to issue concurrent transfer jobs and in most of the cases, 
concurrency has proven itself over parallelism. Another 
study [22], adapts the concurrency level based on the 
changes in the network traffic, does not take into account the 
other bottlenecks that can occur on the end systems. Globus 
Online sets this parameter to 2 along with the other settings 
for pipelining and parallelism. A full comparison of 
pipelining, parallelism and concurrency is presented in 
Figure 1, to indicate the differences of each method from 
each other and from a non-optimized transfer. In this study, 
we provide a step-by-step solution to the problem of big data 
transfer bottleneck for scientific cloud applications. First, we 
provide insight into the working semantics of application-
level transfer tuning parameters such as pipelining, 
parallelism and concurrency. We show how to best utilize 
these parameters in combination to optimize the transfer of 
a large dataset. In contrast to other approaches, we present 
the solution to the optimal settings of these parameters in a 
question-and-answer fashion by using experiment results 
from actual and emulation testbeds. As a result, the 
foundations of dynamic optimization models for these 
parameters are outlined, and several rules of thumbs are 
identified. Next, two heuristics algorithms are presented that 
apply these models. The experiments and validation of the 
developed models are performed on high-speed networking 
testbeds and cloud networks. The results are compared to 
the most successful and highly adopted data transfer tools 
such as Globus Online and UDT [23]. It has been observed 
that our algorithms can outperform them in majority of the 
cases. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig NO-1  Protocol Comparision 
 
2. LITERATURE REVIEW 
 

The following are the existing system implemented as 
follows- 

• FTP 

 

 The classic File Transfer Protocol (FTP) defines a 
capability for clients to send data to servers using the 
underlying TCP/IP protocol of the public Internet. FTP is an 
open standard and widely deployed in almost every 
operating system, is well documented and is broadly 
accepted as the de facto data movement mechanism available 
in modern software.  

Our studies showed that FTP exhibited low scalability in 
large volume transfers performed over a Wide Area Network 
(WAN). It was highly reliable; we did not record a single fault 
or operational failure in 20 hours of testing, and over 100 
gigabytes (GBs) of data movement. FTP’s operational and 
implementation costs are both negligible (e.g., both 0 on our 
scale).  

 

• SCP 

 

The Secure Copy Protocol (SCP) [11] allows for the secure 
transfer of files between two machines using the SSH 
protocol for authentication and encryption over a network. 
Akin to FTP, SCP is built on top of the underlying TCP/IP 
protocol and is a public, open standard.  

SCP, like FTP, exhibited poor scalability over the WAN in 
our testing results. SCP was highly reliable, with no faults 
incurred in over 20 hours of testing, using the same FTP 
datasets. The operational and implementation costs of SCP 
are both negligible, comparable to that of FTP.  
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• GridFTP 

 

GridFTP [12] extends the FTP protocol with new features 
required for large volume, fast data transfer, such as striping, 
partial file access and highly parallel stream-based usage of 
TCP/IP. GridFTP is the basic data movement mechanism 
provided by the Globus Toolkit [12], the widely adopted 
software packages for implementing grid-based software 
applications.  

GridFTP’s scalability was extremely high, it was able to 
transfer at a rate that was directly proportional to that of the 
dataset volume. GridFTP also exhibited high reliability, with 
no faults experienced. We found GridFTP to be difficult to 
deploy, requiring the setup of certificate management for 
hosts, users, and services. Because of this, we estimate that 
the implementation costs to be medium (around 3). On the 
other hand, the operational costs would be negligible (0), as 
the system is highly reliable and configurable as soon as it is 
deployed.  

 

• bbFTP 

 

 bbFTP [13] is an open-source parallel TCP/IP data 
movement technology. bbFTP’s main capabilities are the 
ability to use SSH and certificate based authentication, on-
the-fly data compression and customizable time-outs.  

bbFTP is bleeding edge with little industry adoption, and 
documentation. We found bbFTP to be highly scalable, and 
also highly reliable (no faults during testing) and 
configurable. Cost to implement is negligible (0), as bbFTP 
was easy to find, download, configure and install. Its 
operational costs are somewhat higher (around 3), due to the 
small amount of user documentation provided.  

 

• UFTP 

 

UFTP [5] or UDP-based file transfer protocol with 
multicast is an open-source data movement mechanism 
designed for efficient and reliable transfer of large amounts of 
data to multiple receivers simultaneously. UFTP is particular 
effective over a satellite link (with two way communication), 
or over high-delay Wide Area Networks (WANs) where the 
reliability mechanisms in TCP/IP severely under-utilize the 
available network throughput capabilities.  

We found UFTP to be highly scalable in the only 
environment that we were able to test it in (the LAN), 
outperforming both Aspera and FTP and SCP on similar 
datasets and volumes. UFTP exhibited extremely poor 
reliability with the fault rate a function of the total dataset 
volume. UFTP is a bleeding edge technology, with a small 
customer base and little documentation. Though it was not 
difficult to install, it was extremely difficult to configure its 

firewall rules. Because of this, we estimate high (4) 
implementation costs, and higher (5) costs to operate it.  

• Aspera 

Aspera is a commercially available product built on top of 
a proprietary protocol which fully utilizes the capabilities of 
UDP to send bursts of data from one place to another. Aspera 
builds on top of the SCP protocol to provide secure, reliable, 
and most importantly fast transfer of voluminous data sets 
independent of network latency and packet loss. 

We found that Aspera was not scalable, experiencing low 
transfer rates (nearly linear) based on dataset volume size. 
The fault rate in Aspera was negligible. Aspera was easy to 
deploy, and comes as an installer package for most operating 
systems. Aspera’s documentation was fairly poor. Like UFTP, 
we could not discern the appropriate firewall rules to 
transfer data using Aspera in the WAN environment. We 
estimate the cost to implement Aspera to be low, however, 
thecost to operate it very high. 

 

3. PROBLEM DEFINATION & SCOPE 
 
3.1 Existing System and Its Disadvantages 
 
We review the requirements that motivated our design.  
Striping.  
Continued commoditization of end system devices means 
that data sources and sinks are often clusters. Whether data 
is obtained from disk, sensors, or computation, the “end 
system” that drives a wide area link may involve many 
physical devices and considerable internal parallelism. This 
parallelism may also extend to the external network 
interface: a common configuration might have individual 
nodes connected by 1 Gbit/s Ethernet connections to a 
switch that is itself connected to the external network at 10 
Gbit/s or faster. Thus, we wish to support striped data 
movement operations, in which data distributed across, or 
generated by, a set of computers or storage systems at one 
end of a network is transferred to another remote set of 
storage systems or computers. 
Collective operations.  
While one can in principle express a data transfer between 
two clusters as a set of independent point-to-point transfers, 
it can be valuable to express such transfers as a single 
“collective” operation. Such an expression can permit a more 
concise description of the data transfer and provide a 
convenient logical unit for monitoring and management. 
Such an expression can also expose opportunities for 
optimization that might not be apparent in a set of point-to-
point transfers. Thus, we wish to treat striped transfers as 
collective operations. 
Uniform interfaces.  
Data sources and sinks come in many shapes and sizes, and 
may include clusters with local disks, clusters with parallel 
file systems, archival storage systems (with or without 
parallel data mover support), and geographically distributed 
data sources. 
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We want to make it possible for clients to access such 
sources and sinks via a uniform interface. We also want to 
make it easy to adapt our system to support different sinks 
and sources.  
Network protocol issues.  
The standard protocol for network data transfer remains 
TCP. However, TCP’s congestion avoidance algorithm can 
lead to poor performance, particularly in default 
configurations and on paths with high round trip times. 
Solutions to this problem include careful (ideally automated) 
tuning of TCP parameters [18], TCP protocol improvements 
[40], multiple “parallel” TCP connections [28, 46], and the 
substitution of alternative protocols [13, 14, 27, 33]. We 
want to support such alternatives. End-to-end performance. 
Depending on context, high end-to-end performance can 
require the integrated management of many different 
devices, including storage systems, computers used to 
transform data, network interfaces, and network paths, and 
also perhaps other devices such as computers and storage 
systems located at intermediate points in a network. 
We would like to provide a framework within which a range 
of such end-to-end management approaches can be applied 
in a convenient manner. 
Diverse failure modes. Collective operations, striped 
transfers, and end-to-end management offer opportunities 
for enhanced performance, but also introduce new failure 
modes. Our design must address robustness and fault 
tolerance. 

 
3.2 Proposed System 

We provide a step-by-step solution to the problem of big 
data transfer bottleneck for scientific cloud applications. 
First, we provide insight into the working semantics of 
application-level transfer tuning parameters such as 
pipelining, parallelism and concurrency. We show how to 
best utilize these parameters in combination to optimize the 
transfer of a large dataset. In contrast to other approaches, 
we present the solution to the optimal settings of these 
parameters in a question-and-answer fashion by using 
experiment results from actual and emulation testbeds. As a 
result, the foundations of dynamic optimization models for 
these parameters are outlined, and several rules of thumbs 
are identified. Next, two heuristics algorithms are presented 
that apply these models. The experiments and validation of 
the developed models are performed on high-speed 
networking testbeds and cloud networks. The results are 
compared to the most successful and highly adopted data 
transfer tools such as Globus Online and UDT [23]. It has 
been observed that our algorithms can outperform them in 
majority of the cases. 

 
FIG NO-2 Block Diagram of GFTP 
 
The Globus striped GridFTP system aims for (a) modularity, 
to facilitate the substitution of alternative mechanisms and 
use in different environments and configurations, and (b) 
efficiency, in particular the avoidance of data copies. As in 
systems such as the xKernel [32], we achieve these goals via 
an architecture that allows a protocol processing pipeline to 
be constructed by composing independent modules 
responsible for different functions.  

 
FIG NO-3 Block Diagram of System Architecture 
 
The implementation (Figure 1) comprises three logically 
distinct components: client and server protocol interpreters 
(PIs), which handle the control channel protocol (these two 
functions are distinct because the protocol exchange is 
asymmetric), and the data transfer process (DTP), which 
handles the accessing of the actual data and its movement 
via the data channel protocol. These components can be 
combined in various ways to create servers with different 
capabilities. For example, combining the server PI and DTP 
components in one process creates a conventional FTP 
server, while a striped server might use one server PI on the 
head node of a cluster and a The DTP itself is further 
decomposed into a threemodule pipeline (Figure 2). The 
data access module provides an interface to data source(s) 
and/or sink(s). The data processing module performs 
server-side data processing, if requested by an extended 
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store/retrieve (ESTO/ERET) command. Finally, the data 
channel protocol module reads from, and/or writes to, the 
data channel. This basic structure allows for a wide variety 
of systems, from simple file server logic (data access module 
reads/writes files, data processing module does nothing, 
data channel protocol module writers/reads the data 
channel) to more complex and specialized behaviors (e.g., 
data module generates data dynamically in response to user 
requests). 
 

4. METHODOLOGY 
 
This section describes the overlay network topology and 
methodology used to evaluate the performance of the system. 

 
4.1 GridFTP Overlay Network Topology 
 
The GridFTP overlay network topology used for experiments 
is shown in Figure 2. It is comprised of ten hosts including 
three hosts from the University of Calgary Grid Research 
Centre (GRC), five hosts from Westgrid, one host from 
ACEnet and one host from the University of Houston which is 
part of the HP CCN Grid. WestGrid and ACEnet are high 
performance computing consortia in Western Canada and 
Atlantic Canada respectively. The HP CCN Grid is an HP led 
grid computing collaboration that the GRC is also a 
participant of.  
Split servers were placed at hosts grc15 and octarine in the 
GRC domain as well as condor in the WestGrid domain. 
Connectivity between domains is provided by CA*net4 in 
Canada and Abilene in the United states. The majority of 
hosts are high performance computing facilities. 

 
4.2 GridFTP Log Generation 
 
Initially some of the sites used in these experiments, had no 
GridFTP traffic between them. For this reason GridFTP logs 
were created by transferring data at random intervals 
between the sites. This also allowed us to examine the 
difference between memory to memory transfers and disk to 
disk transfers.  
The arrival times of the GridFTP transfers were modelled as 
a Poisson process for each source with an average inter-
arrival time of 30 minutes and a randomly selected 
destination host. These transfers alternated between disk to 
disk (D2D) transfers and memory to memory (M2M) 
transfers. This meant that the throughput for transfers 
between each host pair was measured on average once every 
9 hours. For D2D transfers a file size was chosen such that 
the transfer would take approximately 90 seconds. The 
range of file sizes available were all powers of 2 from 32MB 
to 1024 MB. A transfer duration of 90 seconds was chosen 
because preliminary experiments determined this was 
sufficient to achieve steady state behaviour. 
D2D transfers were intended to include the cost of disk 
access because not all data transfers are limited by network 

congestion. In many systems, particularly those that use high 
bandwidth networks, the bottleneck for the transfer may 
occur during reading or writing of data to and from disk. The 
use of caching on disk systems means that what was 
intended to be a D2D transfer may have in fact been M2D, 
D2M or M2M. Tests were undertaken and the use of random 
files on some hosts was implemented in order minimize disk 
caching effects. Disk caching is only an issue when the disk, 
not the network is a bottleneck. 
All transfers were performed using a GridFTP client built for 
the purposes of these experiments using the API distributed 
with the Globus Toolkit. The client reported performance 
information every time it was received from the destination 
server. Time measurements for throughput were taken using 
the performance plugin from the GridFTP libraries. 
Connection negotiation time was taken into account.  
C. Analysis of split point selection 
Possible splits for all host pairs were evaluated at random 
intervals with an exponentially distributed inter-arrival time 
with a mean of 6 hours. The possible splits were evaluated 
based on the D2D and M2M throughput predictions. On any 
connection in which a split connection had higher estimated 
bandwidth than the direct connection for either the M2M or 
D2D predictors, a split-connection and a control connection 
were performed one after the other. The control connection 
was a single connection from the source to the destination. If 
the M2M and D2D predictions chose different split points, 
both were attempted.  
Adaptive PCP Algorithm  
This algorithm sorts the dataset based on the file size and 
divides it into 2 sets; the first set (Set1) containing files with 
sizes less than BDP and the second set (Set2) containing files 
with sizes greater than BDP. Since setting different 
pipelining level is effective for file sizes less than BDP (Rule 
2), we apply a recursive chunk division algorithm to the first 
set which is outlined in the following subsection. For the 
second set we set a static pipelining level of 2.  
Recursive Chunk Division for Optimal Pipelining 
This algorithm is mean-based to construct clusters of files, 
with each cluster (chunk) having a different optimal 
pipelining value. The optimal pipelining level is calculated by 
dividing BDP to the mean file size and the data set is 
recursively divided by the mean file size index while several 
conditions are met. The first condition is that a chunk can 
only be divided further if its optimal pipelining is not the 
same as its parent chunk. Secondly, a chunk cannot be less 
than a preset minimum chunk size and the last rule is that 
the optimal pipelining level set for a chunk cannot be greater 
than the preset maximum pipelining level. 
The outline is presented in Algorithm 1. 
 
4.3 Algorithm 1 Recursive Chunk Division(RCD) 
 
Require: list of files _ start index _ end index _ total number  
of files _ min chunk size _ parent pp _ max pp 
Calculate mean file size 
Calculate current opt pp 
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Calculate mean file size index 
if current opt pp! = 1& 
current opt pp 6= parent pp & 
current opt pp <= max pp & 
start index < end index& 
mean file size index > start index& 
mean file size index < end index& 
current chunk size > 2 ⇤ min chunk size then 
call RCD dividing the chunk by mean index 
(start index− > mean index) 
call RCD dividing the chunk by mean index 
(mean index + 1− > start index) 
else 
opt pp = parent pp 
end if 
 
 

5. RESULT 
 
FIG-1 Establishing Connection 

 
 
 
FIG-2 After Login 

 
 
 
 
 
 
 
 

FIG-3 Browse Client 
 

 
 
 
FIG-3 Browse Server 

 
 
 
FIG-4 Upload File to Server 
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FIG-5 Download File to Client 

 
 
This Result shows the retrieved files corresponding to 
the input files we have selected. 
 
 
6. APPLICATIONS 
 
The algorithms were tested on real high-speed networking 
testbeds FutureGrid and Xsede and also cloud networks by 
using Amazon Web Services 12 EC2 instances. Three 
different datasets were used in the tests classified as small 
(between 512KB-8MB), medium (25MB-100MB) and large 
(512MB-2GB) file sizes. Total dataset size was around 10GB-
20GB. The baseline disk write throughput results measured 
with Bonnie++ and dd for every testbed used in the 
experiments are presented in Table 2 for comparison 
purposes. 
 
FutureGrid is a wide area cloud computing testbed with a 10 
Gbps network backbone. However it supports only 1 Gbps 
network interfaces on end-systems so the throughput is 
bounded by the network interface. Xsede previously known 
as TeraGrid is also a 10Gbps wide area testbed which is 
bounded by disk and CPU performance of data transfer 
nodes. Amazon Web Services (AWS) is a commercial cloud 
computing services platform that provides a variety of 
machine instances with different interconnects. On 
Futuregrid, two clusters Sierra and Hotel which are 
connected with 76ms RTT were used. On Xsede, Stampede 
and Gordon were used which are connected with a 50ms 
RTT. For AWS two compute optimised Linux Ubuntu 
instances with 10G interconnects were used in the 
experiments. 
 

6.1 Real Testbed Results 
 
Figure 18.a, b, c shows the results of the algorithms running 
on FutureGrid testbed. For the small dataset, Globus Online 
(GO) and UDT perform very poorly. This shows that these 
tools are not designed for datasets consisting of many small 
files. PCP algorithm throughput divides the dataset in to 5 
chunks and then sets different pipelining levels for each and 
gradually increases the concurrency level. The final chunk 

size which is about 8GB results in the highest transfer speed. 
On the other hand the MC algorithm which is more 
aggressive in setting concurrency levels outperforms the 
others in terms of the average throughput. 
For the medium dataset, GO keeps up to the MC algorithm 
throughput by setting static pp, p and cc values. The average 
throughput of the PCP algorithm follows them and UDT 
performs the worst. The final chunk of the PCP algorithm 
which is around 10GB is transferred at the same speed as the 
MC and GO speeds. The PCP algorithm gradually increases 
the parallelism level until it no longer increases the 
throughput. Then it starts increasing the concurrency level 
with each chunk transfer. 
For the large dataset (Figure 18.c), GO and MC average 
throughput saturates the network bandwidth and UDT 
performs better. PCPs last two chunks (12GB) reaches the 
network bandwidth limit. The maximum throughput that can 
be achieved is bound by the network interface rather than 
the disk throughput. These results show that our algorithms 
can reach maximum limit regardless of the dataset 
characteristics while GO and UDT are only good for relatively 
large files. 
Figure 18.d,e,f presents the experimental results of the 
algorithms on Xsede network. The same dataset 
characteristics are used for the tests which are run between 
SDSC’s Gordon and TACC’s Stampede clusters. 
For the small data set (Figure 18.d) of which file size range is 
between 512KB and 8MB, MC and PCP algorithms perform 
the best. The worst results are seen with GO while UDT 
overperforms it. The last chunk transferred with PCP can 
adaptively reach 3500Mbps throughput. For the middle 
dataset the dataset (Figure 18.e) is divided into two. The first 
set increases the concurrency level while the second set adds 
parallelism. Again MC algorithm which uses concurrency 
aggressively performs the best while PCP adaptively learns 
which concurrency level is best. UDT and GO performs 
worse. The last chunk transferred with PCP can go beyond 
4000Mbps throughput. For the large dataset (Figure 18.f), 
PCP sets the pipelining level to 2 and applies an adaptive 
parallelism and concurrency. 
The last chunk throughput can reach 4500 Mbps. Again MC 
and PCP algorithms are the best and can reach maximum 
disk throughput of Stampede. GO outperforms UDT in this 
case. 

 
6.2 Cloud Testbed Results 
 
The cloud experiments were conducted using Amazon’s EC2 
service. Two cpu-optimized c3.8xlarge type nodes with 10G 
interconnects were launched with an artificial delay of 
100ms. Although the interconnects provide 10G bandwidth, 
the SSD disk volumes bind the maximum achievable 
throughput to around 1Gbps (Table 2). For the small dataset 
transfers (Figure 18.g), UDT performs the worst. GO follows 
UDT with 390Mbps throughput. MC algorithm with a 
concurrency level of 32 outperforms all others. PCP 
adaptively reaches 850Mbps throughput with a data chunk 
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transfer of 7GB but the average throughput of all chunks is 
around 500Mbps. In the medium dataset (Figure 18.h) GO 
performs better than PCP average throughput. MC average 
throughput outperforms all others again. PCP chunk 
throughput gradually surpasses the others. UDT again 
performs the worst. For the large dataset (Figure 18.i) GO 
performance is worse than PCP and MC. It is interesting to 
see that but since we do not have any control over GO 
parameters, we do not know why the medium dataset GO 
results were better. It can be due to different set of pp,p,cc 
values used for different dataset sizes. 
Overall the algorithms that apply our models perform better 
than GO and UDT in majority of the cases. While PCP 
algorithm adaptively tries to reach the end-to-end 
bandwidth, MC algorithms behaves more aggressively based 
on the initially set concurrency level and both are able to 
reach maximum achievable throughput. 
 

7. CONCLUSION 
 
Application-level transfer tuning parameters such as 
pipelining, parallelism and concurrency are very powerful 
mechanisms for overcoming data transfer bottlenecks 
for scientific cloud applications, however their optimal 
values depend on the environment in which the transfers are 
conducted (e.g.available bandwidth, 
RTT, CPU and disk speed) as well as the transfer 
characteristics (e.g. number of files and file size distribution). 
With proper models and algorithms, these parameters can 
be optimized automatically to gain maximum transfer speed. 
This study analyzes 
in detail the effects of these parameters on throughput of 
large dataset transfers with heterogenous file sizes and 
provides several models and guidelines. 
The optimization algorithms using these rules and models 
can provide a gradual increase to the highest throughput on 
inter-cloud and intra-cloud transfers. 
In future work, we intend to write an overhead-free 
implementation of a GridFTP client to reduce the overhead 
regarding connection start up /tear down processes for 
different chunk transfers. 
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