
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 107

Big Data Transfers Using Recursive Chunk Division

1 Prof Nilima Nikam, 2 Ajinkya Sarvankar

12 Yadavrao Tasgaonkar Institute Of Engineering And Technology Dept. Of Computer Engineering
---***---

Abstract - In end-to-end data transfers, there are several
factors affecting the data transfer throughput, such as the
network characteristics (e.g. network bandwidth, round-trip-
time, background traffic); end-system characteristics (e.g. NIC
capacity, number of CPU cores and their clock rate, number of
disk drives and their I/O rate); and the dataset characteristics
(e.g. average file size, dataset size, file size distribution).
Optimization of big data transfers over inter-cloud and intra-
cloud networks is a challenging task that requires joint-
consideration of all of these parameters. This optimization
task becomes even more challenging when transferring
datasets comprised of heterogeneous file sizes (i.e. large files
and small files mixed). Previous work in this area only focuses
on the end-system and network characteristics however does
not provide models regarding the dataset characteristics. In
this study, we analyze the effects of the three most important
transfer parameters that are used to enhance data transfer
throughput: pipelining, parallelism and concurrency. We
provide models and guidelines to set the best values for these
parameters and present two different transfer optimization
algorithms that use the models developed. The tests conducted
over high-speed networking and cloud testbeds show that our
algorithms outperform the most popular data transfer tools
like Globus Online and UDT in majority of the cases.

Key Words: GridFTP, FTP, Recursive Chunk Division(RCD),
FutureGrid

1. INTRODUCTION

1.1 Existing System

Most scientific cloud applications require movement of large
datasets either inside a data center, or between multiple data
centers. Transferring large datasets especially with
heterogeneous file sizes (i.e. many small and large files
together) causes inefficient utilization of the available
network bandwidth. Small file transfers may cause the
underlying transfer protocol not reaching the full network
utilization due to short-duration transfers and connection
start up/tear down overhead; and large file transfers may
suffer from protocol inefficiency and end-system limitations.
Application-level TCP tuning parameters such as pipelining,
parallelism and concurrency are very affective in removing
these bottlenecks, especially when used together and in
correct combinations. However, predicting the best
combination of these parameters requires highly
complicated modeling since incorrect combinations can

either lead to overloading of the network, inefficient
utilization of the resources, or unacceptable prediction
overheads.

1.2 Definition

Among application level transfer tuning parameters,
pipelining specifically targets the problem of transferring
large numbers of small files. It has two major goals: first, to
prevent the data channel idleness and to eliminate the idle
time due to control channel conversations in between the
consecutive transfers. Secondly, pipelining prevents TCP
window size from shrinking to zero due to idle data channel
time if it is more than one Round Trip Time (RTT). In this
sense, the client can have many outstanding transfer
commands without waiting for the “226 Transfer Successful”
message. For example, if the pipelining level is set to four in
GridFTP, five outstanding commands are issued and the
transfers are lined up back-to-back in the same data channel.
Whenever a transfer finishes, a new command is issued to
keep the pipelining queue full. In the latest version of
GridFTP, this value is set to 20 statically by default and does
not allow the user to change it. In Globus Online [2], this
value is set to 20 for more than 100 files of average 50MB
size, 5 for files larger than 250MB and in all other cases it is
set to 10. Unfortunately, setting static parameters based on
the number of files and file sizes is not affective in most
cases, since the optimal pipelining level also depends on the
network characteristics such as bandwidth, RTT, and
background traffic. Using parallel streams is a very popular
method for overcoming the inadequacies of TCP in terms of
utilizing the high-bandwidth networks and has proven itself
over socket buffer size tuning techniques [3], [4], [5], [6], [7],
[8]. With parallel streams, portions of a file are sent through
multiple TCP streams and it is possible to achieve multiples
of the throughput of a single stream. Setting the optimal
parallelism level is a very challenging task and several
models have been proposed in the past [9], [10], [11], [12],
[13], [14], [15], [16]. The Mathis equation[17] states that the
throughput of a TCP stream(BW) depends on the Maximum
Segment Size(MSS), Round Trip Time(RTT), a constant(C)
and packet loss rate(p).
BW = (MSS × C) / (RTT × √p)
(1)
As the packet loss rate increases, the throughput of the
stream decreases. The packet loss rate can be random in
under-utilised networks however when there is congestion,
it increases dramatically. In [9], a parallel stream model
based on the Mathis equation is given.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 108

BWagg <= (MSS × C) / RTT [1 / √p1 ... 1 / √pn] = n (MSS ×
C)/(RTT × √p) (2)
However excessive use of parallel streams can increase the
packet loss rate dramatically, causing the congestion
avoidance algorithm of TCP to decrease the sending rate
based on the losses encountered. Therefore, the packet loss
happening in our case occurs due to congestion. In our
previous study[11], we presented a model to find the
optimal level of parallelism based on the Mathis throughput
equation. Therefore, in Globus Online[2], the parallelism
level is set to 2, 8 and 4 respectively for the cases mentioned
in the second paragraph above. In the context of transfer
optimization, concurrency refers to sending multiple files
simultaneously through the network channel. In [18], the
effects of concurrency and parallelism were compared for
large file transfers. Concurrency is especially good for small
file transfers, and overcoming end system bottlenecks such
as CPU utilisation, NIC bandwidth, parallel file system
characteristics[19](e.g. Lustre file system distributes files
evenly and can provide more throughput in multi-file
transfers). The Stork data scheduler [20], [21] has the ability
to issue concurrent transfer jobs and in most of the cases,
concurrency has proven itself over parallelism. Another
study [22], adapts the concurrency level based on the
changes in the network traffic, does not take into account the
other bottlenecks that can occur on the end systems. Globus
Online sets this parameter to 2 along with the other settings
for pipelining and parallelism. A full comparison of
pipelining, parallelism and concurrency is presented in
Figure 1, to indicate the differences of each method from
each other and from a non-optimized transfer. In this study,
we provide a step-by-step solution to the problem of big data
transfer bottleneck for scientific cloud applications. First, we
provide insight into the working semantics of application-
level transfer tuning parameters such as pipelining,
parallelism and concurrency. We show how to best utilize
these parameters in combination to optimize the transfer of
a large dataset. In contrast to other approaches, we present
the solution to the optimal settings of these parameters in a
question-and-answer fashion by using experiment results
from actual and emulation testbeds. As a result, the
foundations of dynamic optimization models for these
parameters are outlined, and several rules of thumbs are
identified. Next, two heuristics algorithms are presented that
apply these models. The experiments and validation of the
developed models are performed on high-speed networking
testbeds and cloud networks. The results are compared to
the most successful and highly adopted data transfer tools
such as Globus Online and UDT [23]. It has been observed
that our algorithms can outperform them in majority of the
cases.

Fig NO-1 Protocol Comparision

2. LITERATURE REVIEW

The following are the existing system implemented as
follows-

• FTP

 The classic File Transfer Protocol (FTP) defines a
capability for clients to send data to servers using the
underlying TCP/IP protocol of the public Internet. FTP is an
open standard and widely deployed in almost every
operating system, is well documented and is broadly
accepted as the de facto data movement mechanism available
in modern software.

Our studies showed that FTP exhibited low scalability in
large volume transfers performed over a Wide Area Network
(WAN). It was highly reliable; we did not record a single fault
or operational failure in 20 hours of testing, and over 100
gigabytes (GBs) of data movement. FTP’s operational and
implementation costs are both negligible (e.g., both 0 on our
scale).

• SCP

The Secure Copy Protocol (SCP) [11] allows for the secure
transfer of files between two machines using the SSH
protocol for authentication and encryption over a network.
Akin to FTP, SCP is built on top of the underlying TCP/IP
protocol and is a public, open standard.

SCP, like FTP, exhibited poor scalability over the WAN in
our testing results. SCP was highly reliable, with no faults
incurred in over 20 hours of testing, using the same FTP
datasets. The operational and implementation costs of SCP
are both negligible, comparable to that of FTP.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 109

• GridFTP

GridFTP [12] extends the FTP protocol with new features
required for large volume, fast data transfer, such as striping,
partial file access and highly parallel stream-based usage of
TCP/IP. GridFTP is the basic data movement mechanism
provided by the Globus Toolkit [12], the widely adopted
software packages for implementing grid-based software
applications.

GridFTP’s scalability was extremely high, it was able to
transfer at a rate that was directly proportional to that of the
dataset volume. GridFTP also exhibited high reliability, with
no faults experienced. We found GridFTP to be difficult to
deploy, requiring the setup of certificate management for
hosts, users, and services. Because of this, we estimate that
the implementation costs to be medium (around 3). On the
other hand, the operational costs would be negligible (0), as
the system is highly reliable and configurable as soon as it is
deployed.

• bbFTP

 bbFTP [13] is an open-source parallel TCP/IP data
movement technology. bbFTP’s main capabilities are the
ability to use SSH and certificate based authentication, on-
the-fly data compression and customizable time-outs.

bbFTP is bleeding edge with little industry adoption, and
documentation. We found bbFTP to be highly scalable, and
also highly reliable (no faults during testing) and
configurable. Cost to implement is negligible (0), as bbFTP
was easy to find, download, configure and install. Its
operational costs are somewhat higher (around 3), due to the
small amount of user documentation provided.

• UFTP

UFTP [5] or UDP-based file transfer protocol with
multicast is an open-source data movement mechanism
designed for efficient and reliable transfer of large amounts of
data to multiple receivers simultaneously. UFTP is particular
effective over a satellite link (with two way communication),
or over high-delay Wide Area Networks (WANs) where the
reliability mechanisms in TCP/IP severely under-utilize the
available network throughput capabilities.

We found UFTP to be highly scalable in the only
environment that we were able to test it in (the LAN),
outperforming both Aspera and FTP and SCP on similar
datasets and volumes. UFTP exhibited extremely poor
reliability with the fault rate a function of the total dataset
volume. UFTP is a bleeding edge technology, with a small
customer base and little documentation. Though it was not
difficult to install, it was extremely difficult to configure its

firewall rules. Because of this, we estimate high (4)
implementation costs, and higher (5) costs to operate it.

• Aspera

Aspera is a commercially available product built on top of
a proprietary protocol which fully utilizes the capabilities of
UDP to send bursts of data from one place to another. Aspera
builds on top of the SCP protocol to provide secure, reliable,
and most importantly fast transfer of voluminous data sets
independent of network latency and packet loss.

We found that Aspera was not scalable, experiencing low
transfer rates (nearly linear) based on dataset volume size.
The fault rate in Aspera was negligible. Aspera was easy to
deploy, and comes as an installer package for most operating
systems. Aspera’s documentation was fairly poor. Like UFTP,
we could not discern the appropriate firewall rules to
transfer data using Aspera in the WAN environment. We
estimate the cost to implement Aspera to be low, however,
thecost to operate it very high.

3. PROBLEM DEFINATION & SCOPE

3.1 Existing System and Its Disadvantages

We review the requirements that motivated our design.
Striping.
Continued commoditization of end system devices means
that data sources and sinks are often clusters. Whether data
is obtained from disk, sensors, or computation, the “end
system” that drives a wide area link may involve many
physical devices and considerable internal parallelism. This
parallelism may also extend to the external network
interface: a common configuration might have individual
nodes connected by 1 Gbit/s Ethernet connections to a
switch that is itself connected to the external network at 10
Gbit/s or faster. Thus, we wish to support striped data
movement operations, in which data distributed across, or
generated by, a set of computers or storage systems at one
end of a network is transferred to another remote set of
storage systems or computers.
Collective operations.
While one can in principle express a data transfer between
two clusters as a set of independent point-to-point transfers,
it can be valuable to express such transfers as a single
“collective” operation. Such an expression can permit a more
concise description of the data transfer and provide a
convenient logical unit for monitoring and management.
Such an expression can also expose opportunities for
optimization that might not be apparent in a set of point-to-
point transfers. Thus, we wish to treat striped transfers as
collective operations.
Uniform interfaces.
Data sources and sinks come in many shapes and sizes, and
may include clusters with local disks, clusters with parallel
file systems, archival storage systems (with or without
parallel data mover support), and geographically distributed
data sources.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 110

We want to make it possible for clients to access such
sources and sinks via a uniform interface. We also want to
make it easy to adapt our system to support different sinks
and sources.
Network protocol issues.
The standard protocol for network data transfer remains
TCP. However, TCP’s congestion avoidance algorithm can
lead to poor performance, particularly in default
configurations and on paths with high round trip times.
Solutions to this problem include careful (ideally automated)
tuning of TCP parameters [18], TCP protocol improvements
[40], multiple “parallel” TCP connections [28, 46], and the
substitution of alternative protocols [13, 14, 27, 33]. We
want to support such alternatives. End-to-end performance.
Depending on context, high end-to-end performance can
require the integrated management of many different
devices, including storage systems, computers used to
transform data, network interfaces, and network paths, and
also perhaps other devices such as computers and storage
systems located at intermediate points in a network.
We would like to provide a framework within which a range
of such end-to-end management approaches can be applied
in a convenient manner.
Diverse failure modes. Collective operations, striped
transfers, and end-to-end management offer opportunities
for enhanced performance, but also introduce new failure
modes. Our design must address robustness and fault
tolerance.

3.2 Proposed System

We provide a step-by-step solution to the problem of big
data transfer bottleneck for scientific cloud applications.
First, we provide insight into the working semantics of
application-level transfer tuning parameters such as
pipelining, parallelism and concurrency. We show how to
best utilize these parameters in combination to optimize the
transfer of a large dataset. In contrast to other approaches,
we present the solution to the optimal settings of these
parameters in a question-and-answer fashion by using
experiment results from actual and emulation testbeds. As a
result, the foundations of dynamic optimization models for
these parameters are outlined, and several rules of thumbs
are identified. Next, two heuristics algorithms are presented
that apply these models. The experiments and validation of
the developed models are performed on high-speed
networking testbeds and cloud networks. The results are
compared to the most successful and highly adopted data
transfer tools such as Globus Online and UDT [23]. It has
been observed that our algorithms can outperform them in
majority of the cases.

FIG NO-2 Block Diagram of GFTP

The Globus striped GridFTP system aims for (a) modularity,
to facilitate the substitution of alternative mechanisms and
use in different environments and configurations, and (b)
efficiency, in particular the avoidance of data copies. As in
systems such as the xKernel [32], we achieve these goals via
an architecture that allows a protocol processing pipeline to
be constructed by composing independent modules
responsible for different functions.

FIG NO-3 Block Diagram of System Architecture

The implementation (Figure 1) comprises three logically
distinct components: client and server protocol interpreters
(PIs), which handle the control channel protocol (these two
functions are distinct because the protocol exchange is
asymmetric), and the data transfer process (DTP), which
handles the accessing of the actual data and its movement
via the data channel protocol. These components can be
combined in various ways to create servers with different
capabilities. For example, combining the server PI and DTP
components in one process creates a conventional FTP
server, while a striped server might use one server PI on the
head node of a cluster and a The DTP itself is further
decomposed into a threemodule pipeline (Figure 2). The
data access module provides an interface to data source(s)
and/or sink(s). The data processing module performs
server-side data processing, if requested by an extended

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 111

store/retrieve (ESTO/ERET) command. Finally, the data
channel protocol module reads from, and/or writes to, the
data channel. This basic structure allows for a wide variety
of systems, from simple file server logic (data access module
reads/writes files, data processing module does nothing,
data channel protocol module writers/reads the data
channel) to more complex and specialized behaviors (e.g.,
data module generates data dynamically in response to user
requests).

4. METHODOLOGY

This section describes the overlay network topology and
methodology used to evaluate the performance of the system.

4.1 GridFTP Overlay Network Topology

The GridFTP overlay network topology used for experiments
is shown in Figure 2. It is comprised of ten hosts including
three hosts from the University of Calgary Grid Research
Centre (GRC), five hosts from Westgrid, one host from
ACEnet and one host from the University of Houston which is
part of the HP CCN Grid. WestGrid and ACEnet are high
performance computing consortia in Western Canada and
Atlantic Canada respectively. The HP CCN Grid is an HP led
grid computing collaboration that the GRC is also a
participant of.
Split servers were placed at hosts grc15 and octarine in the
GRC domain as well as condor in the WestGrid domain.
Connectivity between domains is provided by CA*net4 in
Canada and Abilene in the United states. The majority of
hosts are high performance computing facilities.

4.2 GridFTP Log Generation

Initially some of the sites used in these experiments, had no
GridFTP traffic between them. For this reason GridFTP logs
were created by transferring data at random intervals
between the sites. This also allowed us to examine the
difference between memory to memory transfers and disk to
disk transfers.
The arrival times of the GridFTP transfers were modelled as
a Poisson process for each source with an average inter-
arrival time of 30 minutes and a randomly selected
destination host. These transfers alternated between disk to
disk (D2D) transfers and memory to memory (M2M)
transfers. This meant that the throughput for transfers
between each host pair was measured on average once every
9 hours. For D2D transfers a file size was chosen such that
the transfer would take approximately 90 seconds. The
range of file sizes available were all powers of 2 from 32MB
to 1024 MB. A transfer duration of 90 seconds was chosen
because preliminary experiments determined this was
sufficient to achieve steady state behaviour.
D2D transfers were intended to include the cost of disk
access because not all data transfers are limited by network

congestion. In many systems, particularly those that use high
bandwidth networks, the bottleneck for the transfer may
occur during reading or writing of data to and from disk. The
use of caching on disk systems means that what was
intended to be a D2D transfer may have in fact been M2D,
D2M or M2M. Tests were undertaken and the use of random
files on some hosts was implemented in order minimize disk
caching effects. Disk caching is only an issue when the disk,
not the network is a bottleneck.
All transfers were performed using a GridFTP client built for
the purposes of these experiments using the API distributed
with the Globus Toolkit. The client reported performance
information every time it was received from the destination
server. Time measurements for throughput were taken using
the performance plugin from the GridFTP libraries.
Connection negotiation time was taken into account.
C. Analysis of split point selection
Possible splits for all host pairs were evaluated at random
intervals with an exponentially distributed inter-arrival time
with a mean of 6 hours. The possible splits were evaluated
based on the D2D and M2M throughput predictions. On any
connection in which a split connection had higher estimated
bandwidth than the direct connection for either the M2M or
D2D predictors, a split-connection and a control connection
were performed one after the other. The control connection
was a single connection from the source to the destination. If
the M2M and D2D predictions chose different split points,
both were attempted.
Adaptive PCP Algorithm
This algorithm sorts the dataset based on the file size and
divides it into 2 sets; the first set (Set1) containing files with
sizes less than BDP and the second set (Set2) containing files
with sizes greater than BDP. Since setting different
pipelining level is effective for file sizes less than BDP (Rule
2), we apply a recursive chunk division algorithm to the first
set which is outlined in the following subsection. For the
second set we set a static pipelining level of 2.
Recursive Chunk Division for Optimal Pipelining
This algorithm is mean-based to construct clusters of files,
with each cluster (chunk) having a different optimal
pipelining value. The optimal pipelining level is calculated by
dividing BDP to the mean file size and the data set is
recursively divided by the mean file size index while several
conditions are met. The first condition is that a chunk can
only be divided further if its optimal pipelining is not the
same as its parent chunk. Secondly, a chunk cannot be less
than a preset minimum chunk size and the last rule is that
the optimal pipelining level set for a chunk cannot be greater
than the preset maximum pipelining level.
The outline is presented in Algorithm 1.

4.3 Algorithm 1 Recursive Chunk Division(RCD)

Require: list of files _ start index _ end index _ total number
of files _ min chunk size _ parent pp _ max pp
Calculate mean file size
Calculate current opt pp

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 112

Calculate mean file size index
if current opt pp! = 1&
current opt pp 6= parent pp &
current opt pp <= max pp &
start index < end index&
mean file size index > start index&
mean file size index < end index&
current chunk size > 2 ⇤ min chunk size then
call RCD dividing the chunk by mean index
(start index− > mean index)
call RCD dividing the chunk by mean index
(mean index + 1− > start index)
else
opt pp = parent pp
end if

5. RESULT

FIG-1 Establishing Connection

FIG-2 After Login

FIG-3 Browse Client

FIG-3 Browse Server

FIG-4 Upload File to Server

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 113

FIG-5 Download File to Client

This Result shows the retrieved files corresponding to
the input files we have selected.

6. APPLICATIONS

The algorithms were tested on real high-speed networking
testbeds FutureGrid and Xsede and also cloud networks by
using Amazon Web Services 12 EC2 instances. Three
different datasets were used in the tests classified as small
(between 512KB-8MB), medium (25MB-100MB) and large
(512MB-2GB) file sizes. Total dataset size was around 10GB-
20GB. The baseline disk write throughput results measured
with Bonnie++ and dd for every testbed used in the
experiments are presented in Table 2 for comparison
purposes.

FutureGrid is a wide area cloud computing testbed with a 10
Gbps network backbone. However it supports only 1 Gbps
network interfaces on end-systems so the throughput is
bounded by the network interface. Xsede previously known
as TeraGrid is also a 10Gbps wide area testbed which is
bounded by disk and CPU performance of data transfer
nodes. Amazon Web Services (AWS) is a commercial cloud
computing services platform that provides a variety of
machine instances with different interconnects. On
Futuregrid, two clusters Sierra and Hotel which are
connected with 76ms RTT were used. On Xsede, Stampede
and Gordon were used which are connected with a 50ms
RTT. For AWS two compute optimised Linux Ubuntu
instances with 10G interconnects were used in the
experiments.

6.1 Real Testbed Results

Figure 18.a, b, c shows the results of the algorithms running
on FutureGrid testbed. For the small dataset, Globus Online
(GO) and UDT perform very poorly. This shows that these
tools are not designed for datasets consisting of many small
files. PCP algorithm throughput divides the dataset in to 5
chunks and then sets different pipelining levels for each and
gradually increases the concurrency level. The final chunk

size which is about 8GB results in the highest transfer speed.
On the other hand the MC algorithm which is more
aggressive in setting concurrency levels outperforms the
others in terms of the average throughput.
For the medium dataset, GO keeps up to the MC algorithm
throughput by setting static pp, p and cc values. The average
throughput of the PCP algorithm follows them and UDT
performs the worst. The final chunk of the PCP algorithm
which is around 10GB is transferred at the same speed as the
MC and GO speeds. The PCP algorithm gradually increases
the parallelism level until it no longer increases the
throughput. Then it starts increasing the concurrency level
with each chunk transfer.
For the large dataset (Figure 18.c), GO and MC average
throughput saturates the network bandwidth and UDT
performs better. PCPs last two chunks (12GB) reaches the
network bandwidth limit. The maximum throughput that can
be achieved is bound by the network interface rather than
the disk throughput. These results show that our algorithms
can reach maximum limit regardless of the dataset
characteristics while GO and UDT are only good for relatively
large files.
Figure 18.d,e,f presents the experimental results of the
algorithms on Xsede network. The same dataset
characteristics are used for the tests which are run between
SDSC’s Gordon and TACC’s Stampede clusters.
For the small data set (Figure 18.d) of which file size range is
between 512KB and 8MB, MC and PCP algorithms perform
the best. The worst results are seen with GO while UDT
overperforms it. The last chunk transferred with PCP can
adaptively reach 3500Mbps throughput. For the middle
dataset the dataset (Figure 18.e) is divided into two. The first
set increases the concurrency level while the second set adds
parallelism. Again MC algorithm which uses concurrency
aggressively performs the best while PCP adaptively learns
which concurrency level is best. UDT and GO performs
worse. The last chunk transferred with PCP can go beyond
4000Mbps throughput. For the large dataset (Figure 18.f),
PCP sets the pipelining level to 2 and applies an adaptive
parallelism and concurrency.
The last chunk throughput can reach 4500 Mbps. Again MC
and PCP algorithms are the best and can reach maximum
disk throughput of Stampede. GO outperforms UDT in this
case.

6.2 Cloud Testbed Results

The cloud experiments were conducted using Amazon’s EC2
service. Two cpu-optimized c3.8xlarge type nodes with 10G
interconnects were launched with an artificial delay of
100ms. Although the interconnects provide 10G bandwidth,
the SSD disk volumes bind the maximum achievable
throughput to around 1Gbps (Table 2). For the small dataset
transfers (Figure 18.g), UDT performs the worst. GO follows
UDT with 390Mbps throughput. MC algorithm with a
concurrency level of 32 outperforms all others. PCP
adaptively reaches 850Mbps throughput with a data chunk

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 114

transfer of 7GB but the average throughput of all chunks is
around 500Mbps. In the medium dataset (Figure 18.h) GO
performs better than PCP average throughput. MC average
throughput outperforms all others again. PCP chunk
throughput gradually surpasses the others. UDT again
performs the worst. For the large dataset (Figure 18.i) GO
performance is worse than PCP and MC. It is interesting to
see that but since we do not have any control over GO
parameters, we do not know why the medium dataset GO
results were better. It can be due to different set of pp,p,cc
values used for different dataset sizes.
Overall the algorithms that apply our models perform better
than GO and UDT in majority of the cases. While PCP
algorithm adaptively tries to reach the end-to-end
bandwidth, MC algorithms behaves more aggressively based
on the initially set concurrency level and both are able to
reach maximum achievable throughput.

7. CONCLUSION

Application-level transfer tuning parameters such as
pipelining, parallelism and concurrency are very powerful
mechanisms for overcoming data transfer bottlenecks
for scientific cloud applications, however their optimal
values depend on the environment in which the transfers are
conducted (e.g.available bandwidth,
RTT, CPU and disk speed) as well as the transfer
characteristics (e.g. number of files and file size distribution).
With proper models and algorithms, these parameters can
be optimized automatically to gain maximum transfer speed.
This study analyzes
in detail the effects of these parameters on throughput of
large dataset transfers with heterogenous file sizes and
provides several models and guidelines.
The optimization algorithms using these rules and models
can provide a gradual increase to the highest throughput on
inter-cloud and intra-cloud transfers.
In future work, we intend to write an overhead-free
implementation of a GridFTP client to reduce the overhead
regarding connection start up /tear down processes for
different chunk transfers.

8. RFERENCES

[1] J. S. Hughes and S. K. McMahon, "The Planetary Data
System. A Case Study in the Development and
Management of Meta-Data for a Scientific Digital
Library.," in Proc. of ECDL, pp. 1998.
[2] J. Postel and J. Reynolds, "File Transfer Protocol
(FTP) RFC Document,
http://www.ietf.org/rfc/rfc959.txt."
[3] W. Allcock, J. Bester, et al., "GridFTP: Protocol
Extensions to FTP for the Grid, http://www-
fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf,"
RFC Draft Document 2001.

[4] "Aspera Software http://www.asperasoft.com,"
2005.
[5] D. Bush, "UFTP - UDP based FTP with multicast.
http://www.tcnj.edu/~bush/uftp.html," 2005.
[6] "Designing TeraByte Storage Bricks,
http://elib.cs.berkeley.edu/storage/brick/system.html
," 2005.
[7] A. Nayate, M. Dahlin, et al., "Transparent
Information Dissemination," in Proc. of Middleware,
pp. 2004.
[8] M. Franklin and S. Zdonik, "A Framework for
Scalable Dissemination-based systems," in Proc. of
OOPSLA, Atlanta, Georgia, pp. 1997.
[9] U. Centintemel and M. Franklin, "Self-adaptive user
profiles for large-scale data delivery," in Proc. of ICDE,
pp. 622-633, 2000.
[10] "http://www-scf.usc.edu/~mattmann/DM-
Matrix-090105.doc," 2005.
[11] "Secure copy -
http://en.wikipedia.org/wiki/Secure_copy," 2005.
[12] C. Kesselman, I. Foster, et al., "The Anatomy of the
Grid: Enabling Scalable Virtual Organizations," Intl'
Journal of Supercomputing Applications, pp. 1-25,
2001.
[13] "bbFTP - Large files transfer protocol,
http://doc.in2p3.fr/bbftp/," 2005.
[14] V. Welch, F. Siebenlist, et al., "Security for Grid
Services," in Proc. of Twelfth International Symposium
on High Performance Distributed Computing (HPDC-
12), pp. 2003.

