
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2803

An efficient Approach to Produce Source Code by Interpreting

Algorithm

Priyanka Motkari, Bhagyashree Wable, Supriya Walzade, Pooja Velhal

Student, Dept. of Computer Engineering, KKWIEER, Nashik, Maharashtra, India

---***---
Abstract - People may possess good logical skills along
with great algorithmic solution designing capabilities but
the inadequate knowledge of programming languages
makes them handicapped. Neophyte programmers may find
it difficult to learn general programming skills and
syntactical skills simultaneously. Visually impaired
developers suffer as they spend double the time in
eradicating syntactical errors as compared to any
programmer with a normal vision. The conversion of an
algorithm to code is still at an early stage. Effective
conversion of algorithms mentioned in natural English
language to code will enable programmers to focus on logic
building and confine them from syntactical errors, further it
will also aid the visually impaired programmers. Although
beneficial, fulfillment of such a converter encounters
multiple challenges like limitations imposed due to
semantics of the English language, case frames, etc. An
algorithm to program converter is an interpreter that is
capable of converting algorithms in English (with fixed
input format) to C code whose flexibility of interpretation
has been enhanced by using synonyms and by the
introduction of a personalized training model.

Key Words: Interpreters, Parsing, NLP, Personalized,
Trigger words

1. INTRODUCTION

Programming is used in wide variety of domains
like astronomy, industrial automation, financial analysis,
microbiology, etc. [5]. It has become ubiquitous highly
efficient solution offered by programming and Information
Technology has been playing a vital role in the rapid
growth and transformation of today. Algorithms form the
fundamental blocks of programming and are core to
solution designing. Implementation of these algorithms
using programming languages serves as a major hurdle.

Though people have good logical skills along with
great algorithmic solution designing capabilities but due
to lack of knowledge of programming languages make
them handicapped. It is difficult for neophyte
programmers to learn syntactical skills and general
programming skills simultaneously. Therefore it is
necessary to develop software that is capable of

converting algorithms written in natural language to a
programming language. The person can focus on problem
solving and he becomes free from syntactical worries
using this software. Although such software may be very
beneficial, various challenges are involves for its
realization.

The rest of the paper organizes as follows: Section 2
discusses the literature survey; Section 3 highlights the
challenges faced implementing natural language to code
interpreter; Section 4 puts forth the conceptual model;
Section 5 gives a concluding remark and outlines the
future scope.

2. LITERATURE SURVEY

There is a common factor between Natural

Language Processing and Programming languages which is
“Language”. Natural Language Processing and
Programming languages are very important domains in
computer science but very less importance has been given
to the interaction in between these two fields [6, 8].
Previously study has been done to develop interpreter
which convert algorithm in natural language to the
programming language source code. But each of such is
having certain limitations. Examples of such interpreter are
ALGOSmart, Natural Java and Semi Natural Language
Algorithm to Programming Language Interpreter.

 ALGOSmart
ALGOSmart [5] is an interpreter which converts

pseudo which is written using XML to the programming
language source code which is in C and Java. But the
ALGOSmart interpreter forces an extra overhead on users
by making it compulsory for them to have knowledge
about a set of predefined XML tags and their correct
implementation and use.

 NaturalJava
The other proposal was NaturalJava. It is natural

language based user interface which allows a user to enter
algorithm in natural English language and it provides the
corresponding Java code. The archetypical implementation
of the proposal mentioned above, called NaturalJava,
Have three main modules as shown in Figure below PRISM
[7] allowed the user to input an algorithmic statement in
English language which was in turn passed to Sundance.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2804

Sundance then generated the corresponding case frames
which were analyzed by PRISM by calling Tree Face.
After each operation Tree Face generated the source code
which was then presented to the user by PRISM.

Fig -1: Architecture of Natural Java [3]

The major limitation in the aforementioned model is
imposed by the finite set of case frames and the ability to
comprehend natural language input. We will deal will
these challenges in detail in the next section.

 Semi Natural Language Algorithm
to Programming Language
Interpreter

 The third proposal was Semi Natural Language
Algorithm to Programming Language Interpreter [1]. This
translator converts algorithm in natural English language
to code in C and Java This interpreter has many semantic
challenges such as it does not support multiple variable
declaration, it also does not support printing the value of
variables. Such limitations imposes constraint on user
while developing fully functional program

3. CHALLAENGES

Before interpreting natural language algorithms
into formal code few attempts have been made. Most
challenges faced implementing natural language algorithm
to code interpreter revolve around the following aspects.

Using Part Of Speech (POS) tagging algorithm it
is easy to tag individual words. While semantics of
the algorithm as a whole becomes difficult to
interpret and process.

Every programming language has its own
features. The aspects of various programming
language becomes more difficult to incorporate to
be identified and interpreted by natural language
processing.

Every individual has a different way of thinking
and different method of expressing a single idea.
Because of that flexibility of identifying and
interpreting natural language algorithm is limited.

The NaturalJava system [7] uses the finite set of case
frames. The concept of mapping an active verb to a

programming action is used by NLP (Natural Language
Processing) for NLP (Natural Language Programming).
That means, if a particular set of words is not present in
the algorithm line, a trigger to activate parsing and
interpretation will not take place. To overcome the
aforementioned challenge, we are using a synonym finder
to increase the vocabulary repertoire of system. Also,
individualistic writing style of users can be accepted into
the system. This input helps to generate personalized
training model for every user to make interpretation of
natural language more flexible.

4. CONCEPTUAL MODEL

In order to address the aforesaid challenge of
flexibility, we have proposed a model consisting of an
interpreter and related interacting modules. The system
accepts an algorithm as an input from the user. On that
algorithm, basic Natural Language Processing is applied
line by line. After that, the processed output is passed to
the interpreter. At the interpreter module, first identified
the statement type and accordingly, it is parsed into
formal C code. The code is displayed to the user which is
forwarded from the interpreter module .Hence, the
conceptual Model consists of four modules interacting
with each other to accept an algorithm in natural language
and interpret it in formal language. The model is shown in
Figure .The modules are:

1 User
2 Basic Algorithm Processing
3 Interpreter
4 Synonyms
5 Personalized Training Model

Fig -2: Conceptual Model.

1. User module:

This module indicates the end user. An algorithm
is accepted into the system, via a desktop application. The
algorithm is processed by the other modules and a Formal
C language code is returned to the user.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2805

2. Basic Algorithm Processing module:
After accepting the algorithm from the user, basic

natural language processing is applied line by line. Lines
and words are separated and Part Of Speech tagging is
applied to the algorithm. This module sets stage for
interpretation.
Consider statement- initialize integer i to 5
The output of this statement after applying basic
algorithm processing would be -
initialize_NNinteger_NNi_NNto_TO 5_CD, where NN is
noun, TO is to and CD is Cardinal Number.

3. Interpreter module:

This is the core module of the model. The
interpreter Works in two stages.

Type identification: The input sentence is
identified as declaration, initialization, input, conditional,
looping etc. statement. This is done by identifying a trigger
word in the statement. The interpreter contains case
frames that map a trigger words to a statement type.
Consider the statement – initialize integer i to 5, the
interpreter first looks for part of speech tags or keywords.
Thus, initialize would be recognized as a keyword and the
statement is forwarded to initialize module for parsing
statement to code.

Parsing into formal C code: Once the statement
is correctly identified, it is sent to the specific module for
parsing. Here, using POS tags and the sentence structure,
the algorithmic line is converted to formal code. Here, the
key is to identify and address different styles of writing
algorithms and correctly parsing them. For this, we
implement a personalized training model that learns style
of writing algorithms, therefore improving flexibility of
writing and accuracy of interpretation. Thus statement
“initialize integer i to 5”, is interpreted to form “int i=5”.

4. Synonyms:

The Flexibility of identifying a trigger for the
interpreter module increase by the synonyms, the force of
trigger words is increased by not only feeding words
manually but by using Synonyms as well. A large set of
words increases the probability of a statement being
correctly identified and parsed.

5. Personalized Training Model
Another powerful method to increase flexibility is

by using a personalized training model. Users would be
asked to input natural language statements for expressing
their individualistic writing style. This style would be
gauged and adapted to by the system. Thus, the next time
the user would type a similar statement; it would be easily
recognized and parsed by the system. This module is
under implementation. This module would increase
accuracy of interpreting algorithm to code by a great deal.

5. EXPERIMENTAL SETUP

Hardware Resources Required

 Computer (Minimum Configuration)
 Hard disk: 40 GB
 Processor: Core i3 and above
 Clock Speed: 3.0 GHz
 RAM: 4 GB

Software Resources Required
 Operating System: Windows 7 and above
 Front End: C#.Net
 Programming Editor: Visual Studio 2010
 Framework: 4.0 or Above
 Programming Language: C#.Net
 Back-end Database: N/A

6. USER SCENARIO

Front end will be provided to the user where user

will enter algorithm in natural English language. An
example input algorithm - to determine which number is
greater among two numbers, is shown below

Input Algorithm:
input an integer no1, no2
if no1 greater than no2 then
print "no1 is greater"
else
print "no2 is greater"
end if
This input will then be sent line by line to the NLP module
which will carry out POS tagging and generate the
corresponding output as shown below

POS Tagged Algorithm:
input_NN an_DT integer_NN no1,no2_.
if_IN no1_DT greater_JJR than_IN no2_CD then_RB
print_NN "_`` no1_NNS is_VBZ greater_JJR "_''
else_RB
print_NN "_`` no2_NNS is_VBZ greater_JJR "_''
end_NN if_IN

The POS Tagged Algorithm will be generated line by line
and each line will be subjected to interpretation by making
use of synonyms and dataset from the personalized model.
The corresponding C, CPP and Java code will be generated
line by line and then it will be merged to produce the final
formal code as shown below
C Code:
int no1, no2;
scanf ("%d" , &no1);
scanf("%d" , &no2);
if (no1 > no2)
{
printf("no1 is greater");
}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 03 | Mar -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2806

else
{
printf("no2 is greater");
}
CPP Code:
int no1, no2;
cin >> no1;
cin >> no2;
if (no1 > no2)
{
cout << "no1 is greater";
}
else
{
cout << "no2 is greater";
}
Java Code:
int no1, no2;
no1 = Scanner.nextInt();
no2 = Scanner.nextInt();

if (no1 > no2)
{
System.out.println("no1 is greater");
}
else
{
System.out.println("no2 is greater");
}

7. CONCLUSION AND FUTURE SCOPE

The system consists of User, Basic Algorithm
Processing, Interpreter, Synonyms and Personalized
Training Dataset modules which interact to form formal
code An algorithm to program converter is an interpreter
that is capable of converting algorithms in English (with
fixed input format) to "C", “CPP” and “Java “code whose
flexibility of interpretation has been enhanced by using
synonyms and by the introduction of a personalized
training model. Effective conversion of algorithms
mentioned in natural English language to code will enable
programmers to focus on logic building and confine them
from syntax worries, further it will also aid the visually
impaired programmers. Although beneficial,
implementation of such converter encounters numerous
challenges like demarcation entailed due to semantics of
the English language, case frames, etc. We have opened
promising results using our current model and we plan to
extend it and incorporate functions, arrays, declarations
and pointers. This part can be covered by creating further
modules with associated triggers and logic for the same.
Further, we aim to overcome the challenge related to
semantics as part of our future scope.

REFERENCES

 [1] Prof. Swapnali Kurhade and Sharvari Nadkarni, Semi
Natural Language Algorithm to Programming Language
Interpreter, International Conference on Advances in
Human Machine Interaction (HMI - 2016), March 03-05,
2016

[2]Guillaume Cabanac; Muthu Kumar Chandrasekaran,
Joint workshop on bibliometric-enhanced information
retrieval and natural language processing for digital
libraries (BIRNDL 2016)

[3]Venera Arnaoudova; Sonia Haiduc; Andrian
Marcus; Giuliano Antoniol, The Use of Text Retrieval and
Natural Language Processing in Software Engineering,ICSE
2015.

[4] Veronika Vincze; Richárd Farkas,De-identification in
natural language processing,Information and
Communication Technology, Electronics and
Microelectronics (MIPRO), 2014 37th International
Convention.

[5] Suvam Mukherjee and Tamal Chakrabarti, Automatic
Algorithm Specification to Source Code Translation, in
Indian Journal of Computer Science and Engineering, 2011
on, Vol. 2, No. 2, pp. 146 159, April May 2011.

[6] Rada Mihalcea, Hugo Liu, Henry Lieberman, NLP
(Natural Language Processing) for NLP (Natural Language
Programming), in the 7th International Conference on
Computational Linguistics and Intelligent Text Processing,
LNCS, Mexico City, February 2006.

[7] David Price, Ellen Riloff, Joseph Zachary and Brandon
Harvey, NaturalJava:A Natural Language Interface for
Programming in Java, in the Proceedings of the 2000 ACM
on Intelligent User Interfaces Conference, pp. 207 211,
January 2000.

 [8] BALLARD, B., AND BIERMAN, A, Programming in
natural language: NLC as a prototype, In Proceedings of
the 1979 annual conference of ACM/CSC-ER (1979).

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Guillaume%20Cabanac.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Muthu%20Kumar%20Chandrasekaran.QT.&newsearch=true
http://ieeexplore.ieee.org/document/7559632/
http://ieeexplore.ieee.org/document/7559632/
http://ieeexplore.ieee.org/document/7559632/
http://ieeexplore.ieee.org/document/7559632/
http://ieeexplore.ieee.org/document/7559632/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Venera%20Arnaoudova.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sonia%20Haiduc.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Andrian%20Marcus.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Andrian%20Marcus.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Giuliano%20Antoniol.QT.&newsearch=true
http://ieeexplore.ieee.org/document/7203123/
http://ieeexplore.ieee.org/document/7203123/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Veronika%20Vincze.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rich.AND..HSH.x00E1%3Brd%20Farkas.QT.&newsearch=true
http://ieeexplore.ieee.org/document/6859768/
http://ieeexplore.ieee.org/document/6859768/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6849597
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6849597
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6849597
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6849597

