Treatment Of Grey Water Using Technique Of Phytoremediation

Randhir Bute¹, Ekta Waghmare², Ajay Sarode³, Amit Chandekar⁴, Abhijit Sawwalakhe⁵,
Kailash Bondre⁶

Assistant Prof. PJLCE, Maharashtra, India¹, UG Student PJLCE Maharashtra, India², UG Student PJLCE
Maharashtra, India³, UG Student PJLCE Maharashtra, India⁴, UG Student PJLCE Maharashtra, India⁵, UG PJLCE
Student Maharashtra, India⁶

Abstract- Scarcity of water has become a major issue. With the increasing population water demand also increases. This report initiates natural method for grey water treatment called phytoremediation. The technique of phytoremediation is an engineered natural way to treat waste water using properties of wetland plants. For the remediation of grey water a small-scale unit is constructed and laboratory reports of various parameters are compared. Reports have promising results, including reduction in BOD and COD levels, complete removal of oil and grease, reduction in turbidity etc.

Keywords- Grey water treatment, phytoremediation technique.

I. INTRODUCTION

At waste water treatment plant, water is dumped into nallas or nearby stream after treatment. From the domestic supply of 135lpcd, 80% is converted into waste water. This waste water includes 70% grey water. There are numerous biological methods for waste water treatment, such as activated sludge process, but these methods are costly and tedious to maintain at domestic level. Thus, the use simple and effective method would prove to be boon. The method of phytoremediation is natural process in the wetlands. Growth of plants such as cannas, dhopa, etc in the wetlands or natural ponds is common scenario. These plants have affection towards the metals, minerals and contaminant substances; which are present in the wetland water as well as soil beneath it. Phytoremediation technique is cost effective and eco-friendly. The technique of phytoremediation works on the basic 6 strategies, namely Phytodegradation, Phytofiltration, Phytoextraction, Phytostabilization, Phytovolatilization, Rhizodegradation. Phytroids extracts the contaminants from the waste water and utilize some of them which are essential for their growth, other are entrapped in the cell wall and excreted as insoluble material. Other contaminants are transported to different parts of plants such as leaves and then transpired into atmosphere. The roots of these plants secrete enzymes which break down the heavy metals into simpler form. These strategies work altogether or sometimes one at a time depending upon the properties of grey water. In this project, cannas, dhopa, umbrella palm, and lemon grass are used, as there were available in the native environment.

II. TECHNIQUE OF PHYTOREMEDITION

Utilizing the plant properties as a medium to remediate grey water benefits the plant in receiving their nutrients.
III. Design of phytoremediation chamber

135lpcd domestic water supply is required for average Indian city as per Indian standards and after utilization generates 80% waste water; which includes 70% grey water. For the design of phytoremediation units 70% of waste water generated is considered.

\[Q_S = \text{Domestic water supply} \]

\[Q_S = 135 \text{lpcd} \]

\[Q_W = \text{Waste water generated} \]

\[Q_W = 80\% \text{ of } Q_S \]

\[Q_W = \frac{80}{100} \times 135 \]

\[Q_W = 108 \text{lpcd} \]

\[Q_D = \text{Grey water generated / Design flow} \]

\[Q_D = 70\% \text{ of } Q_W \]

\[Q_D = \frac{70}{100} \times 108 \]

\[Q_D = 75.6 \text{lpcd} \]

Design flow,

\[Q_D = 0.0756 \text{m}^3/\text{day/person} \]

For 4 person, \(Q_D = 0.30 \text{m}^3/\text{day} \)

Hydraulic conductivity (KSS) = 259m3/day/m2 (as water is flowing from the medium of coarse aggregate)

Hydraulic gradient (S) = 0.01 (Assumed)

Cross-sectional area based on design inflow (AS) = \[
\frac{Q}{KSS} = \frac{0.3}{259 \times 0.01} = 0.1158 \text{m}^2
\]

\[AS \approx 0.12 \text{m}^2 \]

Assumed depth (d) = 0.3

Bed width (w) = \[
\frac{\text{Area}}{\text{depth}} = \frac{0.12}{0.3} = 0.4 \text{m}
\]

Aspect ratio (L:W) = 1.5:1

Length (L) = (1.5) \times (0.4) = 0.6m

The design phytoremediation chamber of 0.3m deep, 0.6m long and 0.4m wide with 2 phytroid plant can treat grey water generated by 4 person at the initial stage of construction and after 10 to 15 days 1 plant could treat grey water generated by 4 people, the root network spreads wider.

IV. Construction and working of remediation unit

For the remediation of grey water generated at domestic level, an artificial sub-surface flow wetland is constructed.

4.1 Construction

3 chambered treatment processes is incorporated as an assembly of drums and pipe-network. Figure no. 2 shows layout of treatment units.

- **Settling tank** - Opaque plastic drum with top opening with lead is used and has provided with provisions for sludge outlet.

- **Phytoremediation chamber** - Coarse aggregates of angular size are provided as layer of 0.2m thick in which the phytroid plants are supported to stand. Sub-surface flow of waste water is provided from
about 0.05m below the top surface of aggregate level.

- **Collecting tank** - Water after phytoremediation is released in the collecting tank.

![Collecting tank](image)

Figure no. 2 Layout of phytoremediation

4.2 Working - The complete process is of 24 hrs after settling of sludge. The complete process is as follows:

- The first unit consist of sedimentation tank where raw water from kitchen sinks, bathrooms, cloths and utensils washing is collected.
- The raw water is allowed to remain still, so as to settle down the larger particles, in form of sludge. The duration for settlement of particles is 24 hr.
- After 24 hrs, water is released in phytoremediation chamber. This chamber contains 15 cm layer of coarse aggregate in which the plants of umbrella palm, lemon grass, cannas and dhopa are planted, which acts as treatment unit.
- Then water is released to another tank after 24 hrs.
- The raw water sample and the treated sample of the same batch were tested on certain parameters in the laboratory. The comparative study of both the reports is discussed further. Water samples for testing is collected as mentioned in Is 3015 (Part 1)

5. **Laboratory test reports**

Grey water sample (figure no.3) and remediated grey water sample (figure no.4) are laboratory tested to determine the chemical as well as physical impurities present in water. Comparative test report of both the sample is given (table no. 1) and is discussed with the help of graphs.

![Grey water sample after phytoremediation](image)

Figure no. 3 Grey water sample after phytoremediation

![Grey water sample after phytoremediation](image)

Figure no. 4 Grey water sample after phytoremediation
5.1 Comparative report of grey water before and after phytoremediation

Table no. 1 shows the comparison of reports of grey water before and after phytoremediation.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Characteristic (Parameters)</th>
<th>Unit</th>
<th>Analysis result</th>
<th>Before treatment</th>
<th>After treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pH</td>
<td></td>
<td></td>
<td>8.2</td>
<td>8.3</td>
</tr>
<tr>
<td>2</td>
<td>Electrical conductivity</td>
<td>µmhos/cm</td>
<td></td>
<td>1225</td>
<td>1207</td>
</tr>
<tr>
<td>3</td>
<td>Turbidity</td>
<td>NTU</td>
<td></td>
<td>20.2</td>
<td>9.8</td>
</tr>
<tr>
<td>4</td>
<td>Total alkalinity (as CaCO₃)</td>
<td>mg/L</td>
<td></td>
<td>480</td>
<td>440</td>
</tr>
<tr>
<td>5</td>
<td>Chloride (as Cl)</td>
<td>mg/L</td>
<td></td>
<td>80.0</td>
<td>70.0</td>
</tr>
<tr>
<td>6</td>
<td>Total hardness (as CaCO₃)</td>
<td>mg/L</td>
<td></td>
<td>340</td>
<td>320</td>
</tr>
<tr>
<td>7</td>
<td>Calcium (as Ca)</td>
<td>mg/L</td>
<td></td>
<td>86.6</td>
<td>79.8</td>
</tr>
<tr>
<td>8</td>
<td>Magnesium (as Mg)</td>
<td>mg/L</td>
<td></td>
<td>30.1</td>
<td>29.2</td>
</tr>
<tr>
<td>9</td>
<td>Carbonate (as CaCO₃)</td>
<td>mg/L</td>
<td></td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>Bi-carbonate (as CaCO₃)</td>
<td>mg/L</td>
<td></td>
<td>480</td>
<td>424</td>
</tr>
<tr>
<td>11</td>
<td>Total solids</td>
<td>mg/L</td>
<td></td>
<td>792</td>
<td>738</td>
</tr>
<tr>
<td>12</td>
<td>Total dissolved solids</td>
<td>mg/L</td>
<td></td>
<td>760</td>
<td>722</td>
</tr>
<tr>
<td>13</td>
<td>Total suspended solids</td>
<td>mg/L</td>
<td></td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>Ammonical nitrogen</td>
<td>mg/L</td>
<td></td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>15</td>
<td>Total phosphorous</td>
<td>mg/L</td>
<td></td>
<td>0.240</td>
<td>0.200</td>
</tr>
<tr>
<td>16</td>
<td>Iron (as Fe)</td>
<td>mg/L</td>
<td></td>
<td>0.32</td>
<td>0.24</td>
</tr>
<tr>
<td>17</td>
<td>Sodium</td>
<td>mg/L</td>
<td></td>
<td>61.6</td>
<td>54.0</td>
</tr>
<tr>
<td>18</td>
<td>Sulphate (as SO₄)</td>
<td>mg/L</td>
<td></td>
<td>70.0</td>
<td>62.0</td>
</tr>
</tbody>
</table>
From the above results following graph is plotted, showing results of chloride, turbidity, oil-grease, COD and BOD. Characteristics graph is plotted as follows,

<table>
<thead>
<tr>
<th>Sr. no</th>
<th>Characteristic (parameters)</th>
<th>Unit</th>
<th>Before treatment</th>
<th>After treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Boron (as B)</td>
<td>mg/L</td>
<td>0.24</td>
<td>0.16</td>
</tr>
<tr>
<td>20</td>
<td>BOD</td>
<td>mg/L</td>
<td>80</td>
<td>44</td>
</tr>
<tr>
<td>21</td>
<td>COD</td>
<td>mg/L</td>
<td>640</td>
<td>210</td>
</tr>
<tr>
<td>22</td>
<td>Oil and grease</td>
<td>mg/L</td>
<td>4.0</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Chart no. 1 Graph showing result of chloride reduction

Chart no. 2. Graph showing result of oil and grease removal
VI. Advantages of phytoremediation-
- It provides aesthetic view and the process is hygienic as sub-surface flow is provided.
- It requires less maintenance and is faster in the work process.
- Electrical or mechanical energy is not required.
- It acquires less space for complete unit as compared to other systems.

VII. Conclusion-
- The laboratory test reports show promising results in the reduction of the contaminants.
- The micro-elements for agriculture such as magnesium, calcium, boron, manganese, sulphur, nitrogen, potassium, calcium iron and phosphorus, etc.
- Also, parameters such as nitrogen, iron, sulphate, magnesium, chloride and boron are within the standards of drinking water as per I.S. specifications.
- Bod and COD are reduced up to 75%
VIII. Acknowledgement

We take a great pleasure and immense pride in presenting our project report on “Treatment Of Grey Water Using technique of Phytoremediation”. We wish to express our gratitude heartfelt thanks to our project guide, Prof. R. S. Bute, Civil engineering department for encouragement, advice and guidance throughout the course of the project. We would like to express our deep sense of gratitude to Prof. Md. G. Pathan, Head of the Department, Civil Engineering, for his constant encouragement, support and valuable guidance. Our sincere thanks to Dr. A. M. Shende, Principal, for extending all the possible help and allow us to use resources that are available in the institute. Finally our gratitude to our faculty members and friends who help us directly and indirectly in successful completion of our project.

IX. References

- Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora Paulo J.C. Favas, João Pratas, Mayank Varun, Rohan D'Souza and Manoj S. Paul.

- Phytoremediation of heavy metal, by Ann Mary Mathew, Bachelor of technology, Cinh University of Science and Technology, Cochin, Kerala, India (2001).

- Waste Water Treatment by Phyto-Remediation Technique by Aditya Vikram Chopra, Umang K Shah And J S Sudarsan at SRM University, Chennai.

- Phytoremediation and Its Mechanisms: A Review by E. E. Etim; Department of Chemistry, University of Uyo, Uyo, Nigeria Received 10 July 2012, Received in revised form 5 August 2012, Accepted 6 August 2012, Published 8 August 2012.

- A framework for integrating phytoremediation into the mndscape architectural design process The University of Guelph By CHRISTINA STEFANIE Plz

- Phytoremediation Technology Evaluation and Preliminary Design Dustin Krajewski MS Civil/Environmental Engineering November 13, 2012

X. BIOGRAPHIES

- Name: Asst. Prof. Randhir S. Bute
 Mobile:+919422824999
 Email Id: randhirbute@gmail.com

- Name: Ekta M. Waghmare
 Mobile: +919049833911
 EmailId: paras_waghmare@rediffmail.com

- Name: Ajay P. Sarode
 Mobile:+917276564434
 Email Id: sarodeajay18@gmail.com
- Name: Amit A. Chandekar
 Mobile: +917757947896
 Email Id: amitchandekar9@gmail.com

- Name: Abhijit K. Sawalakhe
 Mobile: +917350383080
 Email Id: abhijit78665@gmail.com

- Name: Kailash S. Bondre
 Mobile: +917709770771
 Email Id: kailashbondre1@gmail.com