HINDI LANGUAGE GUI FOR TRANSPORT SYSTEM USING NATURAL LANGUAGE PROCESSING

MRS. P. S. BORKAR¹, LOKESH GAHANE ², ANKIT RAUT ³, HARSHALREWATKAR ⁴
SHUBHAM RAMTEKKAR⁵, SWAPNIL PRACHAND ⁶

¹Professor, Department of Computer Science and engineering, PJLCE, Nagpur, India.
²Student, Department of Computer Science and engineering, PJLCE, Nagpur, India.

Abstract - Information is playing an important role in day-to-day life. This database technology has the major impact on the growing use of computer and internet. Database management system has been used for accessing, storing and retrieving data. However, database system is not understandable to each and every user because they are hard to use and understand. People don’t have the knowledge of database language may find it difficult to access database. However, information system isn’t intelligible to every and each user as a result of they’re arduous to use and perceive. individuals with no information of Database language might realize it tough to access information. Therefore, there’s got to establish the new technique and strategies to access the information with the employment of tongue process. so this idea of victimization tongue, SQL triggered the event of a special variety of process methodology referred to as tongue Interface to information wherever user doesn’t have needing to be told the formal language, they will offer question in their linguistic communication. For the those who area unit comfy with the Hindi language would like this application to just accept Hindi sentence as a question , method it and once execution offer result to the user within the same language that is nothing however the Hindi Language Interface to direction System.

Key Words: DBMS, HLIDBMS, NLP, NLIDB, SQL.

1. INTRODUCTION

The requirement of information and data is very important part of life. There are various sources of information but the major one is the databases. Database helps us to store, access and retrieve information. There some unit numerous sources of knowledge however the foremost one is that the databases. Information helps North American nation to store, access and retrieve info. every and each laptop applications area unit dependable on information to access the knowledge. For that it’s necessary to own information of formal query language like SQL however it’s terribly troublesome for everybody to find out and write SQL queries. to beat this downside several scientist have brought bent on use linguistic communication (NL) i.e. English, Hindi, Marathi, Bengali, Arabic etc. in situ of formal query language which may be excellent interface between Associate in Nursing application of laptop and non-technical user.

1.1 Natural Language Processing (NLP)

Natural language processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages. As such, NLP is related to the area of human–computer interaction. In theory, informatics could be a terribly enticing technique of human laptop interaction. Linguistic component understanding is usually remarked as Associate in Nursing AI-complete downside as a result of it appears to need an intensive information regarding the surface world and therefore the ability to control it. Informatics has considerably overlapped with the sphere of computational linguistics, and is commonly thought of a sub-field of computing. NLP has significantly overlapped with the field of computational linguistics, and is often considered a sub-field of artificial intelligence.

The foundation of natural language processing lies during a variety of disciplines like pc and data sciences, linguistics, arithmetic, electrical and EE, computing and AI, psychological, agriculture, prognostication etc. [1]. Applications of natural language processing embrace variety of fields of studies, like artificial intelligence, language interface to information, language text process and report, user interfaces, polyglot and cross language data retrieval (CLIR), speech recognition, AI and professional system, and so on.

1.2 Natural Language Interface to Database (NLIDB)

A person with no knowledge of database language may find it difficult to access database easily. Therefore, SQL tutor was developed for analyzing the ability of Natural Language Processing to develop products for people to interact with
database in simple English. These, product have created a revolution in extracting data from databases. they need discarded the excessive of learning SQL and time is additionally saved in learning in query language.

2. RELATED WORK

Work for developing NLIDB has started in early seventies. Since then many systems have been developed. Early systems have many flaws then some systems were developed to overcome these flaws. Some of the developed NLIDB systems are discussed below.

Following are some developed NLIDB systems are given-

2.1 LUNAR System

W. Woods etal [5] has given information about LUNAR system that answers questions about samples of rocks brought back from the moon. The meaning of system’s name is that is in relation to the moon. To accomplish its function the LUNAR system uses two databases; one for the chemical and the other for literature references. The LUNAR system uses an Augmented Transition Network (ATN) parser and Woods” Procedural Semantics. W. Woods [6] have also given the study of the LUNAR system performance which was quite impressive; it managed to handle 78% of requests without any errors and this ratio rose to 90% when dictionary errors were corrected. But these figures may be misleading because the system was not subject to intensive use due to the limitation of its linguistic capabilities.

2.2 LADDER

It was designed as a NLIDB of information about US Navy ships. According to G. Hendrix etal [7], the LADDER system uses semantic grammar to parse questions to query a distributed database. Although semantic grammars helped to implement systems with impressive characteristics, the resulting systems proved difficult to port to different application domains. Indeed, a different grammar had to be developed whenever LADDER was configured for a new application [5]. The system uses semantic grammars technique that interleaves syntactic and semantic processing. The question answering is done via parsing the input and mapping the parse tree to a database query. The system LADDER was implemented in LISP. At the time of creation of the LADDER system, it was able to process a database that is equivalent to a relational database with 14 tables and 100 attributes.

2.3 RENDEZVOUS System

In the system developed and studied by E. Codd [8] users could access databases via relatively unrestricted natural language. In this Code’s system, special emphasis is placed on query paraphrasing and in engaging users in clarification dialogs when there is difficulty in parsing user input.

2.4 PLANES

D. Waltz stated [9] the Programmed Language-based Enquiry System (PLANES) at the University of Illinois Coordinated Science Laboratory. PLANES include an English language front end with the ability to understand and explicitly answer user requests. It carries out clarifying dialogues with the user as well as answer vague or poorly defined questions. This work is being carried out using database based upon information of the U.S. Navy 3-M Maintenance and Material Management, it is a database of aircraft maintenance and flight data, although the ideas can be directly applied to other non-hierarchic record based databases.

2.5 PHILIQA

This was known as Philips Question Answering System (PHILIQA) explained by R. Scha [10], uses a syntactic parser which runs as a separate pass from the semantic understanding passes. This system is mainly involved with problems of semantics and has three separate layers of semantic understanding. The layers are called “English Formal Language”, ”World Model Language”, and ”Data Base Language” and appear to correspond roughly to the 'external', "conceptual", and "internal" views of data.

2.6 CHAT-80

. CHAT-80 was implemented entirely in Prolog and it is the best NLIDBs system. It transformed English questions into Prolog expressions, which were evaluated against the Prolog database. The code of CHAT-80 was circulated widely and formed the basis of several other experimental NLIDBs. The database of CHAT-80 consists of facts (i.e. oceans, major seas, major rivers and major cities) about 150 of the countries world and a small set of English language vocabulary that are enough for querying the database [24].

2.7 TEAM

B. J. Gross has given a paper on TEAM

(Transportable Natural Language Interface system). A large part of the research of that time was devoted to portability issues. TEAM was designed to be easily configurable by
database administrators with no knowledge of NLIDBs [11, 12].

2.8 ASK
Allowed end-users to teach the system new words and concepts at any point during the interaction. ASK was actually a complete information management system, providing its own built-in database and the ability to interact with multiple external databases, electronic mail programs and other computer applications. All the applications connected to ASK were accessible to the end-user through natural language requests. The user stated his/her requests in English and Ask transparently generated suitable requests to the appropriate underlying systems.

2.9 JANUS
P. Resnik studied [13] that it had similar abilities to interface to multiple underlying systems (databases, expert systems, graphics devices, etc). All the underlying systems could participate in the degree of a natural language request, without the user ever becoming aware of the heterogeneity of the overall system. JANUS is also one of the few systems to support temporal questions.

2.10 EUFID
M. Templeton et al [14] has given that the EUFID system consists of three major modules, not counting the DBMS. First is analyzer module, second is mapped module and third is translator module.

2.11 DATALOG
It is an English database query system based on Cascaded ATN grammar. By providing separate representation schemes for linguistic knowledge, general 14 world knowledge, and application domain knowledge, DATALOG achieves a high degree of portability and extendibility [15]. Systems that also appeared in mid-eighties were LDC [16], TQA [17], TELI [18] and many others.

2.12 SQL Tutor
SQL can be very difficult for beginner users to understand. The SQL-Tutor program tutors students by assisting the students through a number of database questions from four different databases. A student model is kept for each student based on query constraints (each constraint represents a part of the query that is necessary to answer the question). Each time a particular query constraint is used, SQL-Tutor records whether it was used successfully or unsuccessfully. In this way a model of a student’s strengths and weaknesses is generated and SQL-Tutor can select questions which reinforce problem areas or introduce new query concepts [22].

2.13 Other Systems
B. Sujata et al [19] introduced a concept that, the SQL norms are been pursued in almost all languages for relational database management systems. However, not everybody is able to write SQL queries as they may not be aware of the structure of the database. So this has led to the development of Natural Language interface for databases. There is an overwhelming need for non-sophisticated users to query relational databases in their natural language instead of working with the syntax of SQL. As a result many NLIDB have been developed, which provides different options for manipulating queries. The idea of using Natural Language instead of SQL has prompted the development of new type of processing called NLIDB.

M. Dua et al [20] had implemented the system based on NLP which gives output on the basis of NLIDB and HLIDB management system that give the proper result for only select, update and delete queries. A. kumar [21] has given the system which is based on HLIDB using semantic matching.

3. PROPOSED SYSTEM

3.1. Problem Statement
Hindi language interface to online database is totally supported the foundations through that we have a tendency to area unit reaching to perform the operations like choose, insert, update, delete. We have a tendency to are operating to produce the advance question operation like practicality of mixture functions like MIN (), MAX (), SUM () and AVG (). The user can sort the question in Hindi language which language has been processed and can offer the output in Hindi language solely. Time distinction has been calculated, system can offer translation time and execution time in milliseconds further as in nanoseconds.

3.2. Methodology
To achieve the above objective methodology used is given as we are going to use the rule based system which will follow and execute each and every query as per the rules made for it. First it will identify the nature of the query i.e. select, update, delete, create, insert and also it will identify that the query is with aggregation functions or not. To achieve the higher than objective methodology used is given as- we tend to area unit reaching to use the rule based mostly system which can follow and execute every and each question as per
the foundations created for it. Initially it will establish the character of the question i.e. select, update, delete, create, insert and additionally it will establish that the question is with aggregation functions or not. We tend to be using the online database thus it's substantially versatile we are able to simply store all Hindi furthermore as English values in it and additionally we are able to simply retrieve it. With the assistance of hold on values of databases generate SQL question by mapping input question. Finally we are going to execute the Hindi question and additionally get the output in Hindi language itself.

3.3 Implementation & Architecture of the system

Architecture of Hindi language interface to relational database using NLP is given and explained below in fig1.

This architecture is known as HLIDBMS i.e. Hindi Language Interface to Database management System. There are important phases i.e. Tokenizer, query type rule, query table rule, basic queries and its sub rules, query generator engine DBMS & database server.

In tokenize phase Hindi sentence is split into tokens. This is done with fact that all the tokens are separated by a space gap from each other. All the tokens which we get in this phase are stored in an array. Tokens are words of Hindi language. Token may be a table name, column name, condition, any value, command name, operation name or any non-useful word. To understand this; let the user query is as:

\[\text{उन सभी वाहनों का किराया बताओ जो नागपुर से यवतमाळ जा रही है} \]

This Hindi sentence has 7 tokens. First token is सभी which is the starting of sentence. Now सभी means it is reflecting like select all i.e. in SQL we say 'Select *', another token is वाहनों it is reflecting the name of the database table i.e. 'student table' Some tokens may be fields name as in the above query किराया are the field names. There is conjunctions also like जो as well as we also included the commas (,) in the list of tokens & finally last thing is बताओ which is reflecting as the 'select query'. Therefore after this step we have all the tokens from which the sentence is composed of.

After that query type rule will be applied. Query type rule is a rule which will identify which type of query it is whether it is select, insert, update, delete type of query. We are given with the query properties through which we can easily identify the associated Hindi word which is given in the sentence within a query and is given below in figure 2.

Later it will identify the table name with the help of query table rules. It will just see whether the given table is present there or not. These both the things have been possible because of the tokenizer and its tokens which we are matching under each rule. Once the query rules and table rules has been applied then with the further tokens will be proceeding and the sub rules of the selected query will be applied. If the query in Hindi will be the select query then it will look for the rules like column rules, aggregate function rule, where clause and where condition rule.

It will work with the help of tokens only. It is like column rules it will select the number of columns given in the Hindi query.
Aggregate function will identify whether it is min (), max (), sum (), avg () query or not. Other rules like where clause for that are given the properties i.e. It will identify all the associated Hindi English words which are given below in the fig 3.

![Figure 3. Where clause property](Image)

Similarly where condition is also there it will work like same as given above it is consisting of all the conditional part and its associated Hindi words including <, >, =, logical and, or not etc.

Similarly for update query it is having update column rule, where clause rule and where condition rule and its working is same as explained above. The same way insert and delete also work.

At last there is query generator which will generate query from Hindi sentence that query generated will be fired to database and all the selected records selected rows has been displayed in Hindi Language. SQL is generated in this phase according to Hindi sentence. Execute query and display result to user the above SQL query is executed and result of which in Hindi language is displayed to user. The output is in the form of Hindi language and we are giving query also in Hindi language and processing of all this has been done by fig 1 as explained above.

![Figure 4. GUI & timing results](Image)

Once the query has been executed and the result has been shown it will also show the timing result which include whether the query has been successfully executed or not if it is failed it will show the unsuccessful message as shown in the fig 4. It will also give the translation time in milliseconds as well as nanoseconds to notice the minute difference during conversion and same in the case of execution time also, it will show the time required to execute the query.

4. CONCLUSIONS

Rule based graphical user interface to relational database is presented in this paper. The system will accepts hindi sentence as a query and gives output in hindi itself. It is very much useful for the people who do not have any prior knowledge of database and SQL queries languages. For implementation of this system different rule along with the NLP to perform operation such as insert, update, delete, select as well as the aggregate functions such as min (), max (), sum (), avg () etc. are used. To make the system more friendly the dialogue based system can be used in which user will provide the input Hindi query through speech interface.

REFERENCES

