Review on Hybrid Composite Materials and its Applications

Mr. N. Subramani1 Assistant Professor, Mechanical Engineering, Karpagam College of Engineering, Coimbatore
Dr. J. Ganesh Murali2, Professor, Karpagam College of Engineering, Coimbatore.
Dr. P. Suresh3, Professor, Karpagam College of Engineering, Coimbatore.
Mr. V. V. Arun Sankar4 Assistant Professor, Mechanical Engineering, Karpagam College of Engineering, Coimbatore

Abstract - The review article of this paper represents the reduced availability of natural resources, the increasing costs of production, and the apparent limit to our ability to fabricate high strength-to-weight metallic components necessitated the development of new materials to meet the demands of aerospace technology. These materials are called advanced composite materials and will be used to replace some of the metals currently used in aircraft construction. Advanced composites are materials consisting of a combination of high-strength stiff fibers embedded in a common matrix (binder) material, generally laminated with plies arranged in various directions to give the structure strength and stiffness. The much stiffer fibers of boron, graphite, and Kevlar have given composite materials structural properties superior in strength to the metal alloys that they have replaced.

Key Words: Advanced Composite Materials, Composite Types, Applications

1. Introduction
Composite material is a material or alloy mixture with the reinforcement and made from two or more essential materials with pointedly different physical or chemical properties that, when combined, produce a material with physiognomies different from the specific components. The specific constituents remain separate and distinct within the finished structure. The novel material may be favoured for many reasons: common examples include materials which are stronger, lighter, or less expensive when associated to traditional materials. More recently, researchers have also commenced to actively include sensing, actuation, computation and communication into composites, which are known as Hybrid Materials.

Table 1: Properties of Composite Reinforcing Fibers

<table>
<thead>
<tr>
<th>Material</th>
<th>E (GPa)</th>
<th>ϕ (%)</th>
<th>P (%)</th>
<th>E/p (GPa)</th>
<th>ϕ/p (%)</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Glass</td>
<td>72.4</td>
<td>2.4</td>
<td>2.54</td>
<td>35.9</td>
<td>0.655</td>
<td>0.66</td>
</tr>
<tr>
<td>S-Glass</td>
<td>85.5</td>
<td>4.5</td>
<td>2.49</td>
<td>34.3</td>
<td>1.114</td>
<td>1.16</td>
</tr>
<tr>
<td>Aramid</td>
<td>114</td>
<td>3.6</td>
<td>2.35</td>
<td>45.8</td>
<td>0.523</td>
<td>0.51</td>
</tr>
<tr>
<td>Boron</td>
<td>402</td>
<td>2.5</td>
<td>2.65</td>
<td>19.3</td>
<td>0.403</td>
<td>0.40</td>
</tr>
<tr>
<td>BS Graphite</td>
<td>235</td>
<td>4.5</td>
<td>1.31</td>
<td>140.7</td>
<td>3.368</td>
<td>3.41</td>
</tr>
<tr>
<td>BM Graphite</td>
<td>550</td>
<td>2.4</td>
<td>0.65</td>
<td>281.1</td>
<td>3.513</td>
<td>3.61</td>
</tr>
</tbody>
</table>

1.1 Modern Composite Materials and its applications:
Aerospace Applications:
Fuselage, Wings, Control surfaces, Fan blades, Tail cones, Interiors
Materials: Aluminium, Steel, Plastics

Automobiles:
Monocoque/ Chassis, Body closures, under the body, Interiors, Front cabin (train)
Materials: Aluminium, Steel, Iron, Plastics

Wind Turbines:
Wind blades, Nacelles, Spinners
Materials: Steel, Iron

Constructions
Bathtub, Doors & Windows, Roofing & Cladding, Pultruded profiles, Swimming pools
Materials: Concrete, Steel, Plastics

Marine:
Hull, Decks, Fly bridges, Radomes, Mast, Rudders & Centreboards
Materials: Aluminium, Wood, Steel, Plastics

1.2 Advanced Composite Materials & Technologies for Defence:
Composites For Armour Solutions role of Armour is to protect a person, structure or device Achieved by absorbing kinetic energy of the projectile ™Energy may dominantly be absorbed by plastic deformation and/or fracture processes ™Fragments as a result of fracture process should not cause damage to what is being protected and should be arrested by another layer at the back. Armour plate may have to fulfil two roles: a protective role and structural role ™Both roles can be fulfilled by having sufficient strength at high strain rate and appropriate thickness to provide both protection and structural requirements of the Platform (Integral Armour /Structural Armour). Desirability of composite solutions for armour- better mobility and...
transportability “Ability of material to provide resistance to impact depends upon -Hardness to blunt projectile -High strain to failure to absorb energy via a global deformation process involving brittle fracture in ceramics and composites or plastic deformation in metals. “Composites rely primarily on brittle micro fracture events to absorb energy. Ultimate energy absorption is largely controlled by strain to failure of fibers. “Composites are soft and are not effective against hard projectiles (AP ammunition) However, when coupled with ceramics as laminates, they provide effective solution Composites also provide best protection against HESH ammunition.

2. Particle-reinforced composites
This class of composites is most widely used composites mainly because they are widely available and cheap. They are again two kinds: dispersion-strengthened and particulate- reinforced composites. These two classes are distinguishable based upon strengthening mechanism - dispersion-strengthened composites and particulate composites. In dispersion-strengthened composites, particles are comparatively smaller, and are of 0.01-0.1μm in size. Here the strengthening occurs at atomic/molecular level i.e. mechanism of strengthening is similar to that for precipitation hardening in metals where matrix bears the major portion of an applied load, while dispersions hinder/impede the motion of dislocations. Examples: thorium (ThO2) dispersed Ni-alloys (TD Ni-alloys) with high-temperature strength; SAP (sintered alumina powder) - where aluminium matrix is dispersed with extremely small flakes of alumina (Al2O3).

3. Nanocomposites
A broad class of materials, with microstructures modulated in zero to three dimensions on length scales less than 100 nm. • Materials with atoms arranged in nano sized clusters, which become the constituent grains or building blocks of the material. Any material with at least one dimension in the 1-100 nm range. • Constituents have at least one dimension in the nano meter scale. – Nanoparticles (Three nano-scale dimensions) – Nanofibers (Two nano-scale dimensions) – Nano clays (One nano-scale dimension).

4. Natural composite materials
The second level of classification refers to the reinforcement form - fibre reinforced composites, laminar composites and particulate composites. Fibre Reinforced composites (FRP) can be further divided into those containing discontinuous or continuous fibres. Fibre Reinforced Composites are composed of fibres embedded in matrix material. Such a composite is considered to be a discontinuous fibre or short fibre composite if its properties vary with fibre length. On the other hand, when the length of the fibre is such that any further increase in length does not further increase, the elastic modulus of the composite, the composite is considered to be continuous fibre reinforced. Fibres are small in diameter and when pushed axially, they bend easily although they have very good tensile properties. These fibres must be supported to keep individual fibres from bending and buckling. Laminar Composites are composed of layers of materials held together by matrix. Sandwich structures fall under this category. Wood is a good example of a natural composite, combination of cellulose fiber and lignin.
The cellulose fiber provides strength and the lignin is the "glue" that bonds and stabilizes the fiber. Bamboo is a very efficient wood composite structure. The components are cellulose and lignin, as in all other wood, however bamboo is hollow. This results in a very light yet stiff structure. Composite fishing poles and golf club shafts copy this natural design.

Requirements for the fiber should be smaller in diameter and fiber must be much stronger than the bulk material with High tensile strength examples (whiskers, fibers, wires). Matrix Phase should be Binds fibers together and Acts as a medium through which externally applied stress is transmitted and distributed to the fibers, Protects fiber from surface damage. Separates fibers and prevents a crack from one fiber propagating through another.

Fig.5 Natural Fibres

5. Graphene-based composite materials

Graphene sheets—one-atom-thick two-dimensional layers of sp²-bonded carbon—are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (~3,000 W m⁻¹ K⁻¹ and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, is a very efficient wood composite material known to man. Fibrous materials are not new; wood is the most common fibrous structural material known to man.

Fig.6 Natural Fibres

A matrix supports the fibers and bonds them together in the composite material. The matrix transfers any applied loads to the fibers, keeps the fibers in their position and chosen orientation, gives the composite environmental resistance, and determines the maximum service temperature of a composite.

6. Advanced Composite Materials

An advanced composite material is made of a fibrous material embedded in a resin matrix, generally laminated with fibers oriented in alternating directions to give the material strength and stiffness. Fibrous materials are not new; wood is the most common fibrous structural material known to man.

7. Conclusion:

The following studies help us to know the recent technology aided with the composite materials manufacturing and its applications. It will give an outline to the researches to carry out their research effectively in this stream.

8. References:


parameters on fabrication of Al–Mg/Cu composites via friction stir processing”.


[26] AGC 318-71, American Concrete Institute, Building Code Requirements for Reinforced Concrete, Detroit, Michigan, 1971.

[27] Park, R and Paulay, T, Reinforced Concrete Structures, John Wiley & Sons, 1975


