SERIES VOLTAGE COMPENSATOR MODELING AND DESIGN FOR REDUCTION OF GRID-TIE SOLAR INVERTER DC-LINK CAPACITANCE

ABSTRACT: A grid-tie solar inverter with an arrangement voltage compensator for diminishing the high-voltage dc-connect capacitance is exhibited. The compensator gets vitality from the dc connect to maintain the voltage on its dc side and generates an air conditioner voltage to balance the voltage ripple on the dc interface. As the compensator forms little ripple voltage on the dc connect and receptive power, it can be actualized with low-voltage devices, and thus, its voltamp rating is little. As the required vitality stockpiling of the dc interface, shaped by a lessened estimation of the dc-connect capacitor and the compensator, is decreased, the architecture permits supplanting prevalently utilized electrolytic capacitors with choices of longer lifetime, such as power film capacitors, or expanding the system lifetime regardless of whether there is a critical reduction in the capacitance of electrolytic capacitors because of maturing. Definite mathematical examination on the static and dynamic behaviors of the general system, and the control method will be introduced. A streamlined plan strategy for the compensator will be given. A 2-kW, 220-V, 50-Hz model has been assembled and assessed. The theoretical forecasts are contrasted positively and experimental results. At long last, the execution cost with electrolytic-capacitor and compensator for the dc connection will be thought about.

1. INTRODUCTION

In today’s eco-conscious world, the rapid pace of advancement in smart grid technology has a positive effect on the electricity industry reforms. The goal is to use smarter control of distributed energy sources combined with intelligent demand side management to improve the overall efficiency and reliability of the power grid. Regardless of the type of the distributed power generation unit used, the electricity generated by the renewable energy source is processed through a power conditioning system that performs several functions. First, it fabricates an optimal power matching condition for the renewable energy source to deliver maximum power to the power conditioning system. Second, it manages energy flow among the renewable energy source, energy storage system, and surrounding ac and/or dc networks or systems. Third, it produces high-quality power to and from the energy storage system, loads, and connected grid. Finally, it is capable of providing tight output regulation and handling fast transient and dynamic response to external disturbances.

Typical power conditioning systems consist of multiple switching-mode power converters. In order to provide high degree of controllability and flexibility of power flow, the electrical energy generated by renewable energy source is converted into dc power while the one delivered to the other part of the system or load is converted from the dc power. Thus, power converters are all interconnected through a dc link. To ensure a stable operation of the power conditioning system, the dc-link voltage is stabilized by a capacitor bank, which is sometimes the dominant part in terms of the physical volume and cost. Among the different types of capacitors, aluminum electrolytic capacitors are a popular choice for the capacitor bank, due to their high capacitances in a small form factor. However, their life expectancy is comparatively short and is reduced dramatically with elevated ambient temperatures. Statistics reveals that up to 30% of electronic system failures are due to malfunctions of capacitors. Thus, capacitors are sometimes a reliability bottleneck. For high-voltage high-power conversion systems, dc-link capacitors are usually periodically replaced and monitored for reliable and safe operation. Leading to substantial maintenance costs and electronic waste production. To enhance reliability and lifetime, high-performance capacitors, like power film capacitors, have been used as replacements for some electrolytic capacitors.

II. OPERATION OF THE SERIES VOLTAGE COMPENSATOR

Fig. 1 shows the architecture of the grid-tie solar inverter system with a series voltage compensator connected to the dc link. The system consists of two power conversion stages. The front stage is a dc-dc boost converter. It is connected between a string of solar panels and the dc link. The output stage is a grid-tie dc-ac converter, which is connected between the dc link and the power grid. The compensator, which is a capacitor supported full-bridge dc-ac converter without an external dc source, is connected between the two converters. The voltage compensator generates an ac voltage that counteracts the ripple voltage on the output of the boost converter. Thus, the input of the grid-tie inverter is a dc voltage equal to the average value of the voltage vdc across the dc-link capacitor Cdc. ac component of vdc. At the same time, the stable dc level of vdc can be obtained by.
Voltage control, which guarantees the compensator just handles the responsive power in the relentless state. Amid the relentless state operation, vcon squares with the molded air conditioning segment of \(\Delta V_{dc} \). It is then used to contrast and the triangular carrier waveform in the pulse width modulation modulator to generate the voltage \(v_{ab} \) having a similar phase and amplitude with the pulse width modulation modulator to generate the molded air conditioning voltage, both \(v_{ab} \) and \(v_{ac} \) comprises of the dc segment. Since \(t \) of the voltage compensator is acquired from the dc interface. For all intents and purposes, rather than the dc interface, the input current \(i_a \) of the boost converter, the dc-link capacitor \(C_d \) and input current \(i_d \) of the inverter can be expressed as

\[
i_C(t) = i_a(t) - i_d(t). \tag{4}\]

The dominant component of \(\Delta V_{dc} \) is the double of the line frequency harmonics. For the sake of simplicity in the analysis, \(\Delta V_{dc} \) is expressed as

\[
\Delta V_{dc}(t) = |\Delta V_{dc}| \sin(2\omega t + \theta) \tag{5}\]

where \(|\Delta V_{dc}| \) is the magnitude of \(\Delta V_{dc} \) and \(\theta \) is the phase angle of \(\Delta V_{dc} \).

A. Steady-State Characteristics of the Voltage Compensator

Since the voltage compensator counteracts the ripple voltage on the dc-link capacitor only, the input voltage of the grid-tie dc-ac converter, \(V_d \), is equal to \(V_{dc} \). By using (3), the input current of the dc-ac converter, \(i_d \), can be expressed as

\[
id(t) = pg(t) V_{dc} = Pg V_{dc} \cos \varphi \left[\cos \varphi - \cos(2\omega t + \varphi) \right]. \tag{6}\]

By substituting (5) and (6) into (4),

\[
\gamma \cos(2\omega t + \theta - \delta) = Pg \lambda V_{dc} \cos \varphi \cos(2\omega t + \varphi) \tag{7}
\]

where \(\gamma = \frac{P_g V_d}{c_2} \), \(c_2 = \frac{2}{\omega C_d L} \),
and \(\delta = \tan^{-1} \frac{P_g V_d c V_{2d}}{c_2} \).

Detailed proof of (7) is given in the Appendix. By equating the magnitude and phase angle of the LHS and RHS of (7), the following equations can be concluded

\[
|\Delta V_{dc}| = \frac{P_g \gamma \cos \varphi}{\lambda V_{dc}} \tag{8a}
\]

\[
\theta = \varphi + \delta. \tag{8b}
\]

By substituting (8) into (5), the ripple voltage on the dc-link capacitor is

\[
\Delta V_{dc}(t) = P г \gamma \cos \varphi \sin(2\omega t + \varphi + \delta) = \lambda V_{dc} \sin(2\omega t + \varphi + \delta). \tag{9}
\]

According to (9), the relationship among the dc-link capacitance \(C_d \), output phase angle \(\varphi \), and the ripple factor \(\lambda \) is

\[
C_d = \frac{S_g 2\omega V_{2d} 1\varphi_2 - \cos 2\varphi}{10} \tag{10}
\]

where \(S_g \) is the apparent power of the solar inverter.
Detailed proof of (10) is given in the Appendix. Thus, for a given apparent power S_g, the required value of C_{dc} will increase as the power factor $\cos \phi$ decreases. Thus, one of the design constraints is based on considering the minimum power factor. For example, as stated in the statutory requirement

VDE-4105, the minimum power factor is 0.9. As the compensator handles ripple voltage only (i.e., v_{ab} = ΔV_{dc}), the ratio between the apparent power handled by the compensator, S_{ab}, and the apparent power of the whole system is

$$S_{ab} = \frac{v_{ab}, \text{rms} \cdot id, \text{rms} \cdot vd, \text{rms} \cdot id, \text{rms}}{\sqrt{2}V_{dc}} \quad (11).$$

where v_{ab}, rms and vd, rms are the rms values of v_{ab} and vd, respectively, and id, rms is the rms value of the input current of the dc–ac converter.

Thus, as ΔV_{dc}, V_{dc}, the power rating of the compensator is much smaller than that of the whole system. The voltage across the capacitor Ca, va, is regulated at $V_{a,ref}$ by using the control mechanism depicted in Fig. 1. If va< $V_{a,ref}$, energy will be absorbed from the dc link, and vice versa. When va=$V_{a,ref}$, the voltage compensator will ideally absorb zero power. Based on (6) and (9), the average power absorbed by the voltage compensator P_{ab} is

$$P_{ab} = 1T \int_{0}^{T} v_{ab}(t) \cdot id (t) \cdot dt$$

$$= -P_{g} \sin \delta 2 \gamma V_{dc} \cdot \cos 2 \phi \quad (12)$$

where the period $T = \pi / \omega$.

Thus, based on (12), if the compensator only generates the ripple voltage on the dc-link capacitor, it will generate active power. In order to maintain the power balance for stabilizing va at $V_{a,ref}$, a small voltage offset at v_{ab}, Va, appears $V_{ab} = -P_{ab}Id$

$$= P_{g} \sin \delta 2 \gamma \cos 2 \phi \quad (13)$$

The relationship between v_{ab} and va can be expressed as $v_{ab}(t) = v_{con}(t) \cdot V_{tric} \cdot va(t)$

$$= a_{Vdc}(t) + v_{os}(t) \cdot V_{tric} \cdot va(t)$$

$$= a_{PG} \gamma V_{tric} \cdot \cos \phi \sin(2 \omega t + \phi + \delta) \cdot va(t) + a_{Vdc} + v_{os}(t) \cdot V_{tric} \cdot va(t). \quad (14)$$

The first term $a_{PG} \sin(2 \omega t + \phi + \delta)$

$$\gamma V_{r ic} \cos \phi \cdot va(t)$$

represents the ripple voltage compensation on the dc-link capacitor. The second term $a_{Vdc} + v_{os}(t) \cdot V_{tric} \cdot va(t)$ represents the dc component, related to the power balance described in (13). Thus, asymmetrical PWM switching occurs.

Fig. 2(a) and (b) present the operating modes of the compensator using a full bridge. When $S2$ and $S3$ are on, the capacitor Ca is charged by the load current id. Conversely, when $S1$ and $S4$ are on, the capacitor Ca is discharged by id. Fig. 2(c) shows the waveforms of the dc-link capacitor voltage V_{dc}, modulating signal vm, triangular carrier signal v_{tric}, and the voltage across Ca, va. The dc component on v_{ab} is very small. It is observed to be 2.1 V, about 0.5% of the average dc-link voltage of 400 V in the 2-kW inverter system, which will be described in Section V. Thus, such dc component is neglected in the following discussion.

IV. MATLAB/SIMULATION RESULTS

Fig 1: Grid-tie solar inverter with a series voltage compensator.

Fig 2: Control scheme

The dc-link voltage V_{dc} and the input voltage of the voltage compensator va are sensed. The scaling factor α is the ratio between V_{tric} and $V_{a,ref}$, where V_{tric} is the amplitude of the triangular carrier signal v_{tric} in the PWM controller and $V_{a,ref}$ is the voltage reference for the input voltage of the voltage compensator. The difference between $V_{a,ref}$ and va is processed by a PI controller $G(s)$ to give an offset voltage vos . The control signal v_{con} is obtained by combining a v_{dc} with vos. The dc component of αV_{dc} is ideally cancelled in v_{con} by vos as $vos = -\alpha V_{dc}$, where Vos and Vdc are the dc component of vos and v_{dc}, respectively. With such arrangement, it is unnecessary to use a high-pass filter to extract the
CONCLUSION

This paper report broadens the investigation of the idea proposed in which an arrangement voltage compensator is utilized to diminish the dc-link capacitance. Such idea is connected to a grid-tie solar inverter. The modeling and plan of the arrangement voltage compensator has been introduced. Contrasted with this project report have the accompanying unmistakable exchanges:

1) The unaltering state power oversaw by the arrangement voltage compensator is generally steady in the ac–dc–dc system, while the solar inverter has to process time-differing air conditioning power. Thus, connections among the front-organize boost converter, compensator, and output dc–air conditioning converter, have been talked about.

2) Reference gives the static characteristics of the arrangement voltage compensator just, while this project report gives both static and dynamic characteristics of the whole system.

3) The outside characteristics of the whole system have been given.

4) A definite examination on the execution expenses of the electrolytic capacitors and arrangement voltage compensator has been given.

A 2 kW, 220-V, 50-Hz model inverter has been worked to contrast the results and the electrolytic capacitors and with the compensator, separately. The experimental results show that, with the compensator, a 90% reduction of dc-interface capacitance and more than eight times augmentation of evaluated lifetime can be achieved. The frequency reaction of the whole system is additionally confirmed by explore. The execution cost of
the compensator is similar to that of electrolytic capacitors for 400-V applications. For 800-V applications, the usage cost of the compensator is lower than that of the electrolytic capacitors. The fundamental reason is that multiple arrangement associated electrolytic capacitors are required for high-voltage applications, while film capacitors of high-voltage rating are accessible.

REFERENCES

