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Abstract - This arrangement of visual serving (VS) control 
and neural network (NN) learning on humanoid dual-arm 
robot. A VS control system is built by using stereo vision to 
obtain the 3D point cloud of a target object. A least square-
based method is planned to reduce the stochastic error in 
workspace standardization. An NN controller is designed to 
pay for the erect of doubts in payload and other parameters 
during the tracking control. In contrast to the conventional 
NN controller, a deterministic learning technique is utilized in 
this work, to enable the learned neural knowledge to be reused 
before current dynamics changes. A skill transfer mechanism is 
also developed to apply the neural learned knowledge from 
one arm to the other, to increase the neural learning 
efficiency. Tracked path of object is used to provide target 
position to the coordinated dual arms of a Baxter robot. 
Robotic implementations have demonstrated the efficiency of 
the developed VS control system and have verified the 
effectiveness of the proposed NN controller with knowledge 
reuse and skill transfer features. 
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1. INTRODUCTION 
 
The issues pertaining to robot control have gained 
increasing research attention, recently. Visual serving (VS) is 
a technique of control using computer vision information to 
control the motion of a robot. It mainly depends on 
techniques of computer vision, image processing and control 
theory. It is of great importance in improving the edibility of 
robot control systems and has been widely applied. There 
are two central setups of the camera and the robot end-
ejector: eye-in-hand, or End-point open-loop control, in 
which the position of the object is watched by the camera 
appended to the robot hand; eye-to-hand, or end-point 
closed-loop control, in which the movement of the end-
ejector and the object are both watched by a camera settled 
on the world frame. There were several approaches aiming 
to provide a better observation of target objects by 
increasing the number of cameras, e.g. a system using 
multiple cameras and a combination of eye-in-hand camera 
and eye-to-hand camera system. However, they have low 
adaptability to a changing environment. In this paper, the 
control of a Baxter robot arm end-ejector using a stereo 
visual camera ZED as the eye-to-hand camera is addressed. 

Due to a narrower held of view that eye-in-hand VS provides, 
as the sensors are attached in the hand. A least squares-
based method is proposed to reduce stochastic errors during 
camera calibration process. 
 
To improve robot arms control performance, an adaptive 
controller was developed for robot manipulators. It 
employed a barrier Lyapunov function-based synthesis to 
design controller for the manipulator to operate in an 
ellipsoidal con-strained region. An adaptive neural network 
(ANN) control for the robot system in the presence of full-
state constraints is designed. The NN enables the System to 
deal with uncertainties and disturbances effectively. Among 
these work, we see that NN technique has been extensively 
used for robot control system due to its universal 
approximation ability and its capability to cope with 
unmodeled dynamics of the robot systems. The highly 
nonlinear nature of the robot dynamics makes it challenging 
to obtain an accurate model under practical operational 
conditions. However, conventional NN control was focused 
on internal uncertainties. To overcome the uncertainties that 
arise from unknown payload, a novel NN-based intelligent 
controller is designed in this paper and obtains an enhanced 
performance of VS control. 
 
Furthermore, the learning ability of conventional NN 
controllers is limited, since even repeating same task, the 
parameters of controller need recalculation every time. 
Therefore, a deterministic learning technique has been 
developed which is to obtain control dynamic knowledge 
from closed-loop control process, and also reuse the 
obtained knowledge for another similar control task without 
readapting to the uncertainties of the environments. 
Deterministic learning is proposed by using deterministic 
calculations that began from adaptive control, rather than 
utilizing syntactical standards. The deterministic learning 
approach tackles the issue of learning in a dynamic situation 
and is valuable in numerous applications, for ex-ample, 
dynamic pattern recognition, learning and control of 
robotics, and oscillation faults diagnosis. In addition to the 
designed NN controller, deterministic learning feature is 
added in this paper to efficiently reuse the learned 
knowledge. After the initial learning of the environmental 
uncertainties, the proposed NN controller does not need to 
re-learn until the dynamics change. It can greatly reduce the 
computational load. 
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With the aim of improving the intelligence of robot, a robot-
to-robot skill transfer mechanism is proposed. By using 
surface electromyography signal, human arm stiffness was 
extracted to transfer human writing skills to robot. A 
communication language was developed of transferring 
grasping skills from human user to a robot. Unlike these 
conventional approaches of transferring human skills to 
robot, the learned knowledge from NN controller is 
transferred from arm-to-arm with dual-arm robot. With 
guaranteed performance, NN controller only needs to learn 
once about the system uncertainties on one side of dual-arm. 
The other arm can perform the same task without 
readapting the same uncertainties. It can help to increase the 
neural learning efficiency and also to further reduce the 
computational load. 
 
In this context, this paper presents a neural learning 
enhanced VS control system with knowledge reuse and skill 
transfer features. The system was successfully implemented 
on a Baxter humanoid robot and test results are 
demonstrated, which show the potential of the novel 
learning controller. 
 
Preliminaries Consider a parameterized linear time-varying 
(LTV) multivariable system in the following form: 
 

 
Where 
 

 

 
 

2. KINEMATICS MODELING OF HUMANOID BAXTER 
ROBOT ARMS 
 
2.1. Dual-arms workspace identification for 
humanoid Baxter robot 
 
Baxter robot is a humanoid robot with an identical pair of 
seven degree of freedom (DOF) manipulators installed. Each 
manipulator has seven rotational joints and eight links as 
shown in Fig. 1(a). The names of the arm joints are labeled in 
Fig. 1(b). 

Baxter robot's kinematic model together with Denavit–
Hartenberg (DH) Para-meters and joint rotation limits were 
discussed from our previous work. 
 

 
 

Fig. 1.Baxter humanoid robot and its joint labels. S0 
shoulder roll, S1 shoulder pitch, E0 elbow roll, E1 elbow 

pitch, W0 wrist roll, W1 wrist pitch, W2 wrist roll. 
 
It is essential to estimate the robot manipulator workspace 
for optimized robotic design and algorithm. The previous 
method used on single armies extended to both arms to 
calculate the reachable workspace. Randomly chosen 6000 
points in the joint space for each arm were generated by 
using homogeneous radial distribution. Then, point clouds of 
the reachable workspace for both manipulators were 
generated based on the end-ejector positions calculated with 
forward kinematics, as illustrated in Fig. 2(a). Furthermore, 
Delaunay triangulation is applied to the point cloud to 
generate a convex hull of the joint space, as illustrated in Fig. 
2(b). These are used to constrain the individual workspace 
for left and right arms independently in order to let them co-
operate more efficiently. 
 

 
 

The point cloud of reachable workspace of Baxter robot 
arms 

The convex hull of reachable workspace of Baxter robot 
arms 

 
Fig. 2.The identification of Baxter's workspace. 
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3. SETUP OF STEREO VISION SENSOR 
 

3.1 System structure overview 
 
The robot control system is shown in Fig. 3. The ZED stereo 
camera is a passive depth camera consists of two RGB-
cameras with fixed alignment. It is used as the visual sensor 
by the robotic control system. It captures videos in 30 
frames per second (fps) under 1280 720 resolutions to 
produce dense colored depth maps for estimating the 
positions of objects. In experiments, ZED keeps capturing 
videos of objects by its two sensors and sends them to a 
client computer via a Universal Serial Bus (USB) 3.0 cable. 
Based on the difference between two videos, client computer 
constructs disparity maps where the 3D position 
information of objects can be read. Then, the target object's 
position information will be sent to the Sever Computer via 
User Datagram Protocol (UDP) packets. Sever Computer will 
receive, decode them and then command Baxter to follow 
the target object along a reference trajectory. 

 
3.2. Stereo camera calibration 
 
Raw pictures captured by ZED are distorted because lenses 
in ZED introduce non-linear lens distortion deviating from 
the simple pin-hole model. To solve this problem, camera 
parameters calibration is necessary. The aim is to ¯nod out 
the camera parameters such as the intrinsic, extrinsic and 
distortion. Usually researchers used a 2D checker-board 
pattern to evaluate them; avoiding complexity of 3D 
reference models and high cost of precise calibration objects. 
In our work, these parameters are provided by the 
manufacturer, we can employ them directly. 
 
After we completed the camera parameters calibration, 
undistorted pictures can be captured from ZED. Then, we 
can get object's coordinates in ZED coordinate system. 
However, in practice, the position of objects is presented in 
Baxter coordinate system rather than ZED. Therefore, we 
need to transform the ZED coordinates into the Baxter 
coordinates, i.e. the position calibration is necessary.  
 
The transform equation: 
 

 
 

 

Where T is the transformation matrix. (Xi; Yi;Zi) represents 
the ZED coordinates and (xi;yi;zi) represents the Baxter 
coordinates. The aim of position calibration is to form the 
coordinate transform matrix T. T can be achieved by 

 
 
where (xi;yi;zi) and (Xi; Yi;Zi), i = 1, 2, 3, 4, are four non-
coplanar point coordinates in the robot coordinate system 
and the ZED coordinate system, respectively. 
 
To measure coordinates in Baxter coordinate system, the 
simplest way is to use rulers. However, it is very coarse 
because the origin of the Baxter coordinate system is inside 
Baxter's body which is unavailable. Furthermore, it is also 
hard to ensure the horizontality and verticality of the ruler. 
Another way to measure coordinates is to use the kinematics 
of Baxter. At first some established reference coordinates are 
given and then we command Baxter's end-ejector to move to 
these positions by using kinematics. In this way, we can get 
the end-ejector's coordinates without direct measurement. 
Then, we use ZED to measure the end-ejector's coordinates 
in ZED's coordinate system, which will be introduced in the 
next section. In this way, the point’s coordinates in both 
Baxter coordinate system and ZED in Eq. (4) are easily 
achieved. 
 
However, when using kinematics, stochastic errors always 
exist. In order to reduce these errors, least squares method 
is employed. The aim of this algorithm is to calculate an 
overall solution which minimizes the sum of the square 
errors in given data. In order to employ this method in the 
calibration, we must transform Eq. (3) into the form of Eq. 
(6). The transform can be done as below: 
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While A is a known matrix with dimension of 4n x 16. X 
represents the transformation matrix T with dimension of 16 
1. B is a column vector with dimension of 4n x 1. In most 
cases, this equation has no solution. However, we can 
compute the least square solution of it by the following 
approach. Initially, Eq. (6) is transformed as below: 
 

 
 
If ATA is nonsingular, the transformation matrix can be 
calculated as below: 
 

 
 
According to Eq. (8), the solution of Eq. (5) can be achieved, 
i.e. the transform matrix T can be solved by the method of 
least squares. We can get a more precise solution by 
completing more coordinates measurement in ZED and 
Baxter. 
 
Since the robot arms contain red color, and green color itself 
is easily impacted by illumination, a blue object was used for 
detection. Initially, the (Xi; Yi;Zi), i = 1, 2, 3, 4 of the object's 
centroid from four different positions were obtained, out of 
ZED camera, as the black XYZ shown in Fig. 4(a). The end-
ejector's position (xi ;yi ; zi),i =1,2,3,4 were recorded 
simultaneously. The end-ejector was posed10 cm behind the 
object's centroid, in order to follow the object without 
blocking the object from camera view, as the white xyz 
shown in Fig. 4(a). 
 
Then we substituted (xi;yi;zi) and (Xi; Yi;Zi), i = 1, 2, 3, 4 were 
substituted into Eq. (5) to get the transformation matrix T. T 
will be applied to the object's centroid position, and the data 
will be sent to the robot as reference coordinates for 
following the object. The results are shown in Figs. 4(b) and 
5, black XYZ stands for object's reference coordinates and 
white xyz stands for the coordinates that robot end-ejector 
actually followed. 

 
3.3. Theory of depth measurement in ZED 
 
Both pictures captured under active ambient lighting by the 
ZED stereo camera are aligned utilizing the camera intrinsic 
and are amended for distortion. In this way, the undistorted 
images will be stereo rectified to adjust both the projection 
plane’sepipolar lines and guarantee comparable pixel’s 
present in a predetermined row of the image. The pictures 
acquired are then frontal paralleled and are estimated 
correspondingly. The fundamental and the essential 
frameworks are figured by utilizingepipolar geometry. There 
are seven parameters in the fundamental matrix 
representing two image’s pixel relations, three for two image 
planeshomographic and two for each epipole. The essential 
matrix has five parameters in a 3 x 3 matrix; three of them 
are the rotation values between the camera projection 
planes and two for translation. Then, the epipolar lines were 

adjusted and the epipoles was moved to infinity. Figure 6(a) 
delineates the results of stereo correction with row adjusted 
pixels. 
 
The definition of variables utilized underneath is given in 
Table 1. Stereo correspondence is a technique for 
coordinating pixels with comparative surface texture over 
two co-planar picture planes. The separation between the 
columns of these splendidly coordinated pixels is 
characterized as d =xt- xr 

 

 
 

Fig. 5. Precision of calibration. Cross mark: object's 
position. Circle mark: end-ejector's position. 

 

 
 

(a) Rectified stereo images 
(b) Disparity map. 

 
Fig. 6. Stereo images and 3D reconstruction. 

 
Block matching is actualized for assessing the image 
correspondence. With the use of sum of absolute differences 
(SAD), a 15-pixel window block is used to discover the 
matching results. Considering computational load, the 
disparity range is selected as low as [0 40] to match the low 
texture difference of the experiment environment. 
 

 Table 1.  Definition of variables. 

1 xl 
Column value of left image 
pixel 

2 xr 
Column value of right 
image pixel 

3 D Depth (mm) 

4 B Baseline (mm) 
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5 F Focal length (mm) 

6 D Disparity 

7 P Projection matrix 

8 
X/, Y/, 

Z/ 3D world coordinates 

 
In order to get a more complete outcome, Semi-

Global method is used to drive the disparity values to the 
neighboring pixels. The output of disparity map is illustrated 
in Fig. 6(b). Disparity can be calculated by the triangulation 
equation D = B (f/d). It isinverselyproportional to the depth 
of the pixel. Bouguets algorithm is used to obtain the 
Cartesian coordinates from the reconstruction of the image, 
and the equation is 

 
P[x; y; d; 1]T= [X, Y , Z,]T; (9) 

 
where1 is the homogeneous component. 
 

4. DETECTION AND LOCALIZATION OF TARGET 
OBJECT 
 

4.1 Color object detection 
 
Color-based segmentation is utilized in order to isolate a 
single color object from the captured image. One approach is 
to convert the entire RGB frame into corresponding hue-
saturation-value (HSV)-plane and concentrate the pixel 
values of the color you want to detect. By using this method, 
you may be able to detect almost every single 
distinguishable color in a frame. However, implementing this 
approach in live video is challenging because of ambient 
light. An alternative approach has been used in this paper in 
view of our previous work, to convert the captured image 
into L*a*b* color space where the value of “a" and “b" is 
related to the color information of a point. 
 
During the experiments, all images are converted into L*a*b* 
color space and the variance between every point's color and 
the standard color marks will be calculated. The estimations 
are selected based on the minimum variance value of each 
images. Furthermore, intersection of the diagonals was used 
to calculate the centroid and Harris corner detector was 
used to calculate the corners of the object. According to the 
centroid point in the image, the object's coordinates in ZED 
is then extracted from the images. By applying the 
transformation matrix in Sec. 4.2, the object's coordinates in 
Baxter's coordinate system can be calculated. Figure 4(b) 
demonstrates the calculated centroid of the object in robot 
coordinates after the coordinate transformation. 
 

4.2. Object detection regulation 
 
In experiments, we find that because of the nonuniform 
distribution of light in space, object's color in images keeps 
changing as the object moves. Sometimes the value of “a" and 
“b" changes considerably and it affects the stability of object 

detection. To solve this problem, a regulation algorithm in 
object detection was employed. The algorithm is described 
below. (i) Calculate the variance between the image points' 
color and the color marks. (ii) If the value of the variance of 
the object is not so large, go back to (i) and continue next 
detection. Conversely, go to (iii). (iii) Calculate theaverage 
value of “a" and “b" around the centroid points, and update 
the older color marks with the new value. Then, start next 
detection based on these new color marks.By employing the 
algorithm above, object detection becomes more stable and 
more adapted to the environment. 
 

5. CONTROL AFTER NN LEARNING 
 
During the last set of experiments, the NN will ¯rst learn the 
dynamics while both manipulators tracking the object along 
a repeated trajectory, same as previous two. After four 
cycles, the NN was adapted with the external dynamics 
(attached pay-load). So that the trained NN will be reused for 
the further teleoperation. The control torque inputs of right 
and left arms are shown in Figs. 10(c) and 10(d). The per-
formance of tracking is illustrated in Fig. 8(c).From Fig.8(d), 
it can be seen that the designed adaptive controller can help 
system to compensate tracking error from both internal and 
external dynamics. The trained NN has a steady performance 
with reusing the trained knowledge to increase tracking 
performance. 
 

6. CONCLUSION 
 
An NN learning enhanced VS control method was developed 
in this paper and implemented on a humanoid dual-arm 
Baxter robot. The object and its color was detected by a 
stereo camera and an regulation algorithm was applied to 
ensure the e®ectiveness of detection. The calibration 
between camera and robot's coordinates was done with the 
proposed least square-based method to reduce stochastic 
errors.The dynamic parameters of the manipulator are 
estimated by the radial basis function NN and an improved 
adaptive control method is designed for compensating the 
e®ect of uncertain payload and other uncertainties during 
the dynamic control of the robot. Speci¯cally, a knowledge 
reuse method with skill transfer feature has been created to 
increase the neural learning decency. This ensures that the 
learned NN knowledge can be easily reused furnishing 
repetitive tasks and also can be transferred to another arm 
for performing the same task. The proposed NN controller 
was validated with tests on a Baxter humanoid robot, and 
can realize optimal perfor-mance of the designed VS control. 
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