FACE DETECTION AND RECOGNITION USING BACK PROPAGATION NEURAL NETWORK (BPNN)

*1Ms. Vijayalakshmi. T , *2 Mrs. Ganga T. K

*1M.phil Research Scholar, Department of computer Science Muthurangam Government Arts College (Autonomous), Vellore, Tamilnadu, India.
*2Assistant Prof, Department of Computer Science Muthurangam Government Arts College (Autonomous), Vellore.

Abstract - Face Recognition is one of the most important and fastest growing biometric areas during the last several years and become the most successful application in image processing and broadly used in security systems. A real-time system for recognizing faces using mobile device or webcam was implemented. Face detection is the first basic step of any face recognition system. Viola-Jones method is used to detect and crop face area from the image. Feature extraction considered as a main challenge in any face recognition system. Principal Component Analysis (PCA) is efficient and used for feature extraction and dimension reduction. Back Propagation Neural Network (BPNN) and Radial Basis Function (RBF) are used for classification process. RBF is considered the result of BPNN output layer as input. The system is tested and achieves high recognition rates. Information about individuals was stored in a database.

Key Words: Face Detection, Face Recognition, Feature Extraction, Biometrics, Neural Network, PCA, BPNN, RBF

I. INTRODUCTION

Face recognition is very important for our daily life. It can be used for remote identification services for security in areas such as banking, transportation, law enforcement, and electrical industries, etc. For this security access project is aimed at demonstrating facial recognition techniques that could antique, substitute, or otherwise, supplement, conventional key, and can be used as an alternative to existing fingerprint biometrics method. A computerized system equipped with a digital camera can identify the face of a person and determine if the person is authorized to start the vehicle. This integrated system would be able to authorize a user before switching on the vehicle with a key. Whilst facial recognition systems are by now readily available in the market, the vast majority of them are installed at large open spaces, such as in airport halls. The focus of this project is, thus, to compare the extracted feature with face image database for the recognition analysis using Neural Network.

Face recognition is a visual pattern recognition problem. In detail, a face recognition system with the input of an arbitrary image will search in database to output people's identification in the input image. A face recognition system generally consists of four modules as depicted in Figure 1: detection, alignment, feature extraction, and matching, where localization and normalization (face detection and alignment) are processing steps before face recognition (facial feature extraction and matching) is performed [1].

![Figure 1: Structure of a face recognition system](image_url)
II. RELATED WORK

ARTIFICIAL NEURAL NETWORK

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process.

Neural networks, with their remarkable ability to derive meaning from complicated or imprecise data, can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. A trained neural network can be thought of as an "expert" in the category of information it has been given to analyze. This expert can then be used to provide projections given new situations of interest and answer "what if" questions.

Types of neural networks:

Feed forward neural network

The feed forward neural networks are the first and arguably simplest type of artificial neural networks devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network.

Single-layer perceptron

The earliest kind of neural network is a single-layer perceptron network, which consists of a single layer of output nodes; the inputs are fed directly to the outputs via a series of weights. In this way it can be considered the simplest kind of feed-forward network. The sum of the products of the weights and the inputs is calculated in each node, and if the value is above some threshold (typically 0) the neuron fires and takes the activated value (typically 1); otherwise it takes the deactivated value (typically -1). Neurons with this kind of activation function are also called McCulloch-Pitts neurons or threshold neurons.

Multilayer perceptron

The MLP neural network consists of an input layer, one or more hidden layers, and an output layer. Each layer is made up of units. The inputs to the network correspond to the attributes measured for each training tuple. The inputs are fed simultaneously into the units making up the input layer. These inputs pass through the input layer and are then weighted and fed simultaneously to a second layer of “neuron like” units, known as a hidden layer. The outputs of the hidden layer units can be input to another hidden layer, and so on. The number of hidden layers is arbitrary, although in practice, usually only one is used.

Back propagation:

Back propagation is a common method of training artificial neural networks so as to minimize the objective function. It is a supervised learning method, and is a generalization of the delta rule. It requires a dataset of the desired output for many inputs, making up the training set. It is most useful for feed-forward networks (networks that have no feedback, or simply, that have no connections that loop). The term is an abbreviation for “backward propagation of errors”.

III. PREVIOUS IMPLEMENTATIONS

Face recognition is a multi-class classification problem in which face is classified as belonging to any subject. Face recognition is substantially different from classical pattern recognition problems, such as object recognition. The shapes of the objects are usually different in an object recognition task, while in face recognition one always identifies objects with the same basic shape.

Face recognition is to find the best match of an unknown image against a database of face models or to determine whether it does not match any of them well. In this method, we use back propagation neural network for implementation. It is an information processing system that has been developed as a generalization of the mathematical model of human recognition. The function of a neural network is to produce an output pattern when presented with an input pattern [2]. Zdravko Liposock, Sven Loncaric A grey-level profile image is thresholder to produce a binary image, representing the face region. After normalizing the area and orientation of this shape using basic morphological operations, dilation and erosion, we simulate hair growth and haircut and produce two new profile silhouettes. From this three profile shapes feature vectors are obtained using distances between outline curve points and shape centroid [6].
IV. SYSTEM IMPLEMENTATION

A machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and classification it has an identical functional form to the support vector machine, but provides probabilistic classification. It is actually equivalent to a Gaussian process model with covariance function:

\[k(x,x') = \sum_{j=1}^{n} \frac{1}{\sigma_j} \varphi(x,x_j) \varphi(x',x_j) \]

Where \(\varphi \) is the kernel function (usually Gaussian), and \(x_1,...,x_N \) are the input vectors of the training set. Multilayer Perceptron (MLP) network is the most widely used neural network classifier. MLPs are universal approximates. MLPs are valuable tools in problems when one has little or no knowledge about the form of the relationship between input vectors and their corresponding outputs.

Feed-Forward Backpropagation

A Feed-Forward network consists of a series of layers. The first layer has a connection from the network input. Each subsequent layer has a connection from the previous layer. The final layer produces the network's output. Feedforward networks can be used for any kind of input to output mapping. Specialized versions of the feed-forward network include fitting (fitnet) and pattern recognition (patternnet) networks. Feed-forward backpropagation network is simply the application of backpropagation procedure into the feed-forward networks such that every time the output vector is presented, it is compared with the desired value and the error is computed. The error value tells us how far the network is from the desired value for a particular input and the backpropagation procedure is to minimize the sum of error for all the training samples.

The error is computed by,

Error = (desired value - actual value)^2

The syntax of Feed-Forward Backpropagation takes the following arguments:

\[
\text{net} = \text{feedforwardnet} \left(\text{hidden-Sizes}, \text{training-function} \right)
\]

where,

- hidden-Sizes – Row vector of one or more hidden layer sizes (Default = 10)
- training-function – Training function (Default = 'trainlm')

The functions return a new feed-forward backpropagation network.

Fig: Feed-Forward Network

This example shows how to use feedforward neural network to solve a simple problem.

\[
\begin{align*}
\text{x} & = \text{simplefit_dataset;} \\
\text{net} & = \text{feedforwardnet(10);} \\
\text{net} & = \text{train(net,x,t);} \\
\text{view(net)} \\
\text{y} & = \text{net(x);} \\
\text{perf} & = \text{perform(net,y,t)}
\end{align*}
\]

Cascade-Forward Backpropagation

Cascade-Forward networks are similar to feed-forward networks, but include a connection from the input and every previous layer to following layers. As with feed-forward networks, two-or more layer cascade-network can learn any finite input-output relationship arbitrarily well given enough hidden neurons.

The syntax of Cascade-Forward Backpropagation takes the following arguments:

\[
\text{net} = \text{cascadeforwardnet} \left(\text{hidden-Sizes}, \text{training-function} \right)
\]

where,

- hidden-Sizes – Row vector of one or more hidden layer sizes (Default = 10)
- training-function – Training function (Default = 'trainlm')

The functions return a new Cascade-Forward Backpropagation network.

Fig: Cascade-Forward Backpropagation

Certain points are noteworthy while developing either a feed-forward or cascade-forward networks as follows:
The transfer functions can be any differentiable transfer function such as tansig, logsig or purelin.

The training function can be any of the backpropagation training functions such as trainlm, trainbfg, trainrp, traingd, traindx etc.

The learning function can be either of the following functions such as learngd or learngdm.

Cascade-forward networks are similar to feed-forward networks, but include a connection from the input and every previous layer to following layers. As with feed-forward networks, a two- or more layer cascade-network can learn any finite input-output relationship arbitrarily well given enough hidden neurons.

Here a cascade network is created and trained on a simple fitting problem.

```matlab
[x,t] = simplefit_dataset;
net = cascadeforwardnet(10);
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
```

Perceptron

Perceptrons are simple single-layer binary classifiers, which divide the input space with a linear decision boundary. Perceptrons can learn to solve a narrow range of classification problems. They were one of the first neural networks to reliably solve a given class of problem and their advantage is a simple learning rule.

The syntax of a perceptron takes the following arguments:

```matlab
Perceptron(hardlimitTF, perceptronLF)
```

Where,

- hardlimitTF - hard limit Transfer function (Default = 'hardlim')
- perceptronLF- perceptron Learning rule (Default = 'learnp')

The functions return a new perceptron network.

Algorithm: Generate Data Set
Input: Training Data, Testing Data
Output: Decision Value

Method:

1. **Step 1:** Load Dataset
2. **Step 2:** Classify Features (Attributes) based on class labels
3. **Step 3:** Estimate Candidate Support Value
 While (instances! =null)
 Do
 Step 4: Support Value=Similarity between each instance in the attribute Find Total Error Value
 Step 5: If any instance < 0
 Estimate
 Decision value = Support Value/Total Error
 Repeat for all points until it will empty
 End If

Classification Tree Algorithm

Algorithm: Generate a Classification from the training tuples of data partition D.

Input:

- Data partition D, which is a set of training tuples and their associated class labels;
- Attribute list, the set of candidate attributes;
- Attribute selection method, a procedure to determine the splitting criterion that “best” Partitions the data tuples into individual classes. These criterions consist of a splitting Attribute and, possibly, either a split point or splitting subset.

Output: A decision tree

Method:

1. Create a node N;
2. If tuples in D are all of the same class, C then
3. Return N as a leaf node labeled with the class C
4. If attribute list is empty then
5. Return N as a leaf node labeled
6. d with the majority class in D
7. Apply Attribute selection method (D, attribute list) to find the “best” splitting criterion
8. Label node N with splitting criterion
9. If splitting attribute is discrete-valued and multiway splits allowed then
10. Attribute list ← attribute list – splitting attribute
11. For each outcome j of splitting criterion
12. Let Dj be the set of data tuples in D satisfying outcome j
13. If Dj is empty then
14. Attach a leaf labeled with the majority class in D to node N
15. Else attach the node returned by Generate decision tree (Dj, attribute list) to node N
16. End for
17. Return N

V EVALUATION RESULT

The Regression plot from the UCI Machine Learning Repository is used to differentiate benign (non-Face Detection and Recognition) from malignant (Face Detection and Recognition) samples. To evaluate the effectiveness of our method, experiments on WDBC is conducted. This database was obtained from the university of Wisconsin hospital, Madison from Dr. William H. Wolberg. This is publicly available dataset in the Internet. Table 1 shows a brief description of the dataset that is being considered.

The dataset for this study are collected from the Wisconsin breast Face Detection and Recognition diagnosis database available in the UCI repository. All the data that have been collected are the results of diagnosis made through Biopsy procedures. There are 569 instances and 10 attributes which also contains patient’s ID number as a separate attribute. All the values are encoded with four significant digits. The ten real-valued attributes are as follows:

EXPERIMENTAL RESULT

The experiment was carried out in MATLAB workspace (version number –MATLAB 2016a).MATLAB’s Neural Network Toolbox (NNTool) provided various features to carry out the implementation part of the three algorithms chosen as mentioned in the previous sections of this document. Initially all the input, sample and the target data have been imported into the Matlab workspace to create and train the networks using the NNTool. The discussion is as follows:

The network for feed-forward backpropagation and cascade-forward backpropagation were created by setting the training function TRAINGDX and learning function LEARNGDM. The errors are computed using the Mean Squared Error (MSE) function. The number of neurons and layers in the network are initialized at random and the transfer function used is LOGSIG. For perceptron, network is created using HARDLIM training function and LEARNP learning function. The network is thus created and trained number of times until satisfactory performance is met. The following figure shows the working analysis of feed-forward network using the tool.

(a) and (b) shows the plot regression analysis of a feed-forward network and a cascade-forward network with respect to the data computed for the analysis of the breast Face Detection and Recognition diagnosis.

Fig: (a) Regression Plot of Feed-Forward Backpropagation

Fig: (b) Regression Plot of Cascade-Forward Backpropagation
Figure(c) shows the Performance of a perceptron network. The Regression plot displays three divisions of output namely Training, Validation and Testing. The Regression R values measure the correlation between outputs and targets. An R value of 1 means a close relationship and 0 a random relationship.

Clustering is one of the most important unsupervised learning problems in that it deals with finding a structure in a collection of unlabeled data. In other words, clustering is the process of organizing objects into groups whose members are similar in some way.

CONCLUSION

In this work, a real-time face recognition system is implemented. Images are captured from a mobile device or webcam. Face detection is the first step in face recognition system. Viola-Jones method is used for face detection. BPA is used for feature extraction. Classification process is done using BPNN and RBF-NN. The neural networks aimed to provide artificial intelligence to the system. Neural networks using Back Propagation and Radial Basis Function is presented for face recognition. The BPNN method is preferred over other neural network methods because of its unique ability to minimize errors. The use of BPNN shows acceptable results. The recognition rate is increased when combine BPNN with RBF-NN. From these results, it can be concluded that this method has the acceptance ratio is more than 90 % and execution time of only few seconds. The results of the experiments indicate that the RBF-NN achieves the best performance while allowing less neuron in the hidden layer. The RBF-NN method shows also to be less sensitive to the choice of the training set. This method can be suitably extended for moving images and the images with varying background.

REFERENCES:

