Improvement Transient Stability of Fixed Speed Wind Energy Conversion System by Using Transformer-Type Superconducting Fault Current Limiter

Ali Azizpour¹, Seyed Etezad Moghimi², Sajad Dadfar³

¹ Department of Electrical Engineering, Mazandaran university of Science and Technology, Behshahr, Iran
²,³ Iran Power Generation, Transmission and Distribution Management Company (TAVANIR), Iran

Abstract - The wind turbine generation system (WTGS) is one of the representative renewable energy systems. With the rapid development of WTGS and its increased capacity, the level of short circuit current will increase in distribution systems. The application of the Superconducting Fault Current Limiter (SFCL), would not only reduce the level of the short circuit current but also offer a reliable interconnection to the network. The transformer-type superconducting fault current limiter (SFCL) is one of the fault current limiters, and has many advantages such as design flexibility. In this paper, the effect of transformer-type SFCL on transient behavior of grid connected to WTGS is studied. The WTGS is considered as a fixed-speed system, equipped with a squirrel-cage induction generator. The drive-train is represented by two-mass model. The simulation results show that the transformer-type SFCL not only limits the fault current but also can improve the dynamic performance of the WTGS.

Key Words: Wind Turbine Integration, Fixed Speed Wind Turbine, Induction Generator, Transformer-Type SFCL, Transient Stability

1.INTRODUCTION

There are promising reasons that future power grids will be different compared to current power grids due to integration of renewable energy resources which require new controlling, monitoring and protection models [1-2]. Energy and environmental issues have become one of the main challenges facing the world. Concerning about environmental pollution and a possible energy shortage, the capacities of renewable energy generation systems are being expanded. Generally, renewable energy resources provide both electric utilities and customers with a lot of benefits including: high quality electricity, emission reduction, and so on [3-6]. By increasing development of robotics field using renewable energy in this field also attracts a lot of researchers’ attention [7-10]. Free and clean renewable energy resources such as solar photovoltaic and wind generation offer flexibility to the power network and are the key players in reducing operating cost and emissions of the system [11-13]. However, due to their intermittency and uncertainty, integrating them into the power system is challenging and complicated [14-15]. Each renewable energy sources have different challenges. Some photovoltaic systems challenges are their optimum tilt angle [16] and effect of temperature on PV panels[17]. Indeed, balancing supply and demand in power systems including large amount of renewable energy penetration requires flexible renewable energy resources [18-27].

The WTGS is one of the representative renewable energy systems. Wind energy conversion systems have two types: fixed and variable speed systems. As a simple conversion system, the fixed speed system is still applied at electric power industry. It is necessary to research power flow and transient stability of distribution system with wind turbine generators [28-30].

The connection of wind turbines to the grid causes the fault current level increase beyond capabilities of existing equipment in some points of grids. This not only might damage the series equipment but also can cause negative effect on WTGS with respect to voltage stability [31].

Increasing fault currents often requires the costly replacement of substation equipment or the imposition of changes in the configuration that may lead to decreased operational flexibility and lower reliability. An alternative approach to reduce the fault current is the application of Fault Current Limiters (FCLs). Their application allows equipment to remain in service, even if the fault current exceeds its rated peak and short time withstand current [32-33]. Since the voltage sag during the fault is proportional to the short circuit current, an effective fault current limiter connected to the WTGS not only limits the large fault current but also improves the voltage stability of WTGS [34].
recent years, various types of FCL such as, solid state FCL, resonant circuit and SFCL (Superconducting Fault Current Limiter) have been proposed and developed [35]. SFCL offers a solution to limit fault current with many significant advantages. The application of the SFCL would not only decrease the stress on device but can also improve reliability, improve power quality, limit the inrush current of transformers, reduce the transient recovery voltage (TRV) across the CBs and improve transient stability of power systems by reducing the fault current. There are different types of SFCLs which are based on different superconducting materials and designs such as, flux-lock, transformer, resistive and bridge-types SFCL [36-38]. The transformer-type SFCL has zero impedance under normal conditions and large impedance under fault conditions (the same as other FCLs) [39-43]. But, it has significant advantages as follow:

- large design flexibility of the current limiting device,
- isolation between the current limiting device and the power transmission line,
- reduction of heat loss of the current limiting device
- prevention from instantaneously deep voltage drop during fault

This characteristic of the transformer-type SFCL suppresses the instantaneous voltage drop and it is able to improve transient behavior of WTGS during fault. In this paper, the effect of transformer-type SFCL on transient behavior of WTGS is studied. The WTGS is considered as a fixed-speed system, equipped with a squirrel-cage induction generator. The drive-train is represented by two-mass model. The simulation results show that the transformer-type SFCL can improve the dynamic performance of the WTGS.

2. Transformer-Type Fault Current Limiter

2.1. Power Circuit of Transformer-Type SFCL

The transformer-type SFCL is shown in Fig. 1. This type of FCL basically consists of a transformer in series with the line and a resistive superconducting current limiting device connected to the secondary winding of the series transformer (T).

2.2. Characteristic of Transformer-Type SFCL During Fault

The circuit shown in Fig. 2 has been used for analytical studies. The source impedance has been modeled by $Z_s = r_s + j\omega L_s$. The impedance, $Z_L = r_L + j\omega L_L$ presents the line and load impedance.

This characteristic of the transformer-type SFCL suppresses the instantaneous voltage drop and it is able to improve transient behavior of WTGS during fault. In this paper, the effect of transformer-type SFCL on transient behavior of WTGS is studied. The WTGS is considered as a fixed-speed system, equipped with a squirrel-cage induction generator. The drive-train is represented by two-mass model. The simulation results show that the transformer-type SFCL can improve the dynamic performance of the WTGS.
increase. The characteristic of the SC device used for analysis is shown in Fig. 3.

![Fig. 3: Resistance of superconducting current limiting device during transition](image)

Under the normal operating condition, the transformer-type SFCL shows very low impedance because the resistance of the superconducting current limiting device is zero (RSC(t)=0). But, when fault occurs (t=tf) in the line, large fault current flows through the transformer. This will cause the current through the superconducting current limiting device, to increase beyond its critical level and the resistance of superconducting current limiting device is increased during fault. As a result, the transformer-type SFCL will limit the fault current at determined value as shown in Fig. 4.

![Fig. 4: Fault current during fault and normal operation with using transformer-type SFCL](image)

3.1. Wind Speed Model

One approach to model a wind speed sequence is to use measurements. A more flexible approach is to use a wind speed model that can generate wind speed sequences with characteristics to be chosen by the user. As shown in Fig. 5, wind speed is modeled as the sum of v_wa(t) base wind speed, v_wg(t) gust wind speed, v_wr(t) ramp wind speed and v_wt(t) noise wind speed [45]. According to these four wind speeds, the adopted wind speed model for a single wind turbine is, as follows:

\[
v_w (t) = v_{wa} (t) + v_{wr} (t) + v_{wg} (t) + v_{wt} (t)
\]

![Fig. 5: Wind Speed Model](image)

3.2. Wind Turbine Model

In general, the relation between described, as follow [46]:

\[
P_{wt} = \frac{1}{2} \rho A_{wt} C_p(\lambda, \theta) v_w^3
\]

where, P_{wt} is the power extracted from the wind, \(\rho \) is the air density, \(v_w \) is the wind speed, \(C_p \) is the performance coefficient or power coefficient, \(\lambda \) is the tip speed ratio, \(A_{wt} = \pi R^2 \) is the area covered by the wind turbine rotor, \(R \) is the radius of the tip speed ratio and \(\lambda \) is defined, as follows:

\[
P_{wt} = \frac{R \omega_r}{v_w}
\]

where, \(\omega_r \) is the angular mechanical speed. The performance coefficient is different for each turbine and is relative to the tip speed ratio \(\lambda \) and pitch angle \(\beta \). In this paper, the \(C_p \) is, as follows:

\[
C_p = \frac{1}{2} (\lambda - 0.022\beta^2 - 5.6)e^{-0.17\lambda}
\]
The CP - λ curves are shown in Fig. 6 for different values of β.

Fig. 6: CP- λ curves for different pitch angles

3.3. Shaft Model/ Drive Train System

The shaft model of the wind turbine is described by the two-mass model as shown in Fig. 7 and defined by the following equations:

\[
\frac{d\theta}{dt} = \omega_t - \omega_g \quad (7)
\]

\[
\frac{d\omega_t}{dt} = \frac{1}{2H_t} (T_t - K_\theta \theta + D(\omega_g - \omega_t)) \quad (8)
\]

\[
\frac{d\omega_g}{dt} = \frac{1}{2H_g} (-T_e + K_\theta \theta - D(\omega_g - \omega_t)) \quad (9)
\]

Where,

- \(T_t \): the mechanical torque referred to the generator side,
- \(T_e \): the electromagnetic torque,
- \(H_t \): the equivalent turbine-blade inertia,
- \(H_g \): the generator inertia,
- \(\omega_t \): the turbine’s rotational speed,
- \(\omega_g \): the generator’s rotational speed,
- \(K \): the shaft stiffness
- \(D \): the damping constant
- \(\theta \): the angular displacement between the ends of the shaft

Fig. 7: Two mass model of wind turbine train

3.4. Induction Generator Model

The PSCAD/EMTDC software library provides a standard model for the induction generator, represented by a standard seventh-order model in ad- q reference frame. This model is used in this paper.

4. Stability Analysis

The concept of the induction generator stability can be further explained by using the electrical torque versus rotor speed curve of an induction generator. In order to obtain a mathematical relationship between electrical torque and rotor speed, the steady-state equivalent circuit of an induction generator shown in Fig. 8 is used [47-49].

Fig. 8: Steady-state equivalent circuit of induction generator (a), complete model and (b) Thevenin model.

The electrical torque, \(T_e \) can be calculated, as follows:

\[
T_e = \frac{R_e}{s} I_r^2 = \frac{R_e}{s} \frac{V_{th}^2}{(R_{th} + R_e/h)^2 + (X_{th} + X_e)^2} \quad (10)
\]
When the induction machine operates as a generator, the mechanical torque is negative. Therefore, the electrical-mechanical equilibrium equation of an induction generator can be written, as follows:

$$\frac{d\omega}{dt} = \frac{(T_e - T_m)}{2H}$$

(11)

where, H is the inertia constant. From Eq. (11), two equilibrium points, where the electrical torque is equal to the mechanical torque, can be found. Using FCL has advantages as follows:

- The fault current is limited and voltage sag is prevented at the terminal voltage of induction generator (V_t). According to Eq. (10), the electrical torque is proportional to the square of the terminal voltage. Therefore, FCL prevents from the decreasing electrical torque and accelerating the induction generator.

- FCL prevents from increasing speed independent of fault clearing time. According Eq. (10), the electrical torque is inversely proportional to slip and rotor speed. Therefore, FCL prevents from decreasing electrical torque and accelerating induction generator.

5. Simulation Results

A single line diagram of the simulated power system with transformer-type SFCL is shown in Fig. 9. The parameters of this system are listed in table I in appendix A. A 3-phase short circuit fault is simulated on line 2 which starts at $t=10s$. After 200 ms, the circuit breaker isolated the faulted line. The simulations have been carried out by PSCAD/EMTDC for two cases, as follows:

- Case A: Without using any FCL in the system
- Case B: By using the transformer-type SFCL

Fig. 10 shows the rms value of the PCC voltage in the both cases (A) and (B). It can be observed that the PCC voltage decreases to zero in case A, approximately. The transformer-type SFCL not only decreases the voltage sag to 0.95 pu, but also prevents from instantaneous voltage sag in fault instant. Fig. 11 shows the total active power generated by the induction generator and the grid. During the fault ($10s<t<10.2s$), the active power generated by the induction generator is increased by using the transformer-type SFCL. Fig. 12 shows the total reactive power exchanged between the induction generator and the grid. After the fault has cleared (at $t = 10.2$ s), the absorbing reactive power from the grid is significantly reduced. However, the reactive power absorbed by the induction generator is reduced, in case B. Figures 13 and 14 show the rotor speed of the induction generator, and the electrical torque, respectively. As shown in Fig. 13, the generator rotor-speed swing is reduced in case B. These results show that transformer-type SFCL can provide an effective damping to the post-fault oscillations of the induction generator. As shown in Fig. 14, the variation of the electrical torque is reduced in case B. Because the transformer-type SFCL in prevents an instantaneous voltage sag during fault. The transformer-type SFCL is very effective in suppressing the variations of the electrical torque during fault, but it results in swings after fault clearing.

Fig. 15 shows the rotor current of induction generator. In both figures, the amplitude of rotor currents is reduced in case B. However, the rotor current transients are significantly reduced in fault instant and after fault clearing.
Fig. 11: Active power of induction generator during fault

Fig. 12: Reactive power of induction generator during fault

Fig. 13: Rotor speed of induction generator during fault

Fig. 14: Electrical torque of induction generator during fault

Fig. 15: Electrical torque of induction generator during fault

6. CONCLUSION

In this paper, the effect of the transformer-type SFCL in transient performance of fixed speed turbines has been studied based simulation by PSCAD/EMTDC. The simulation results show that the transformer-type SFCL not only limits the fault current but also suppresses the voltage drop and improves generator stability. Also, the oscillation of active and reactive powers, electrical torque and stator and rotor currents are reduced effectively during fault.
Appendix

Table 1: Parameters of test system

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>grid</td>
<td></td>
</tr>
<tr>
<td>Supply</td>
<td>20 kV</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Step down transformer</td>
<td>.69kV/20 kV</td>
</tr>
<tr>
<td>line</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0.1 (Ω/km)</td>
</tr>
<tr>
<td>X</td>
<td>0.2 (Ω/km)</td>
</tr>
<tr>
<td>Length of Line 1</td>
<td>20 km</td>
</tr>
<tr>
<td>Length of Line 2</td>
<td>20 km</td>
</tr>
<tr>
<td>Induction Generator</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>1MW</td>
</tr>
<tr>
<td>Voltage</td>
<td>690 V</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Number of poles</td>
<td>4</td>
</tr>
<tr>
<td>Stator resistance</td>
<td>0.00577 Ω</td>
</tr>
<tr>
<td>Stator reactance</td>
<td>0.0782 Ω</td>
</tr>
<tr>
<td>Rotor resistance</td>
<td>0.0161 Ω</td>
</tr>
<tr>
<td>Rotor reactance</td>
<td>0.1021 Ω</td>
</tr>
<tr>
<td>Magnetizing reactance</td>
<td>2.434 Ω</td>
</tr>
<tr>
<td>FCL</td>
<td>SC resistance</td>
</tr>
</tbody>
</table>

REFERENCES

